Skip to main content
Log in

A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The theory of splines is a well studied topic, but the kinship of splines with fractals is novel. We introduce a simple explicit construction for a -cubic Hermite Fractal Interpolation Function (FIF). Under some suitable hypotheses on the original function, we establish a priori estimates (with respect to the L p -norm, 1≤p≤∞) for the interpolation error of the -cubic Hermite FIF and its first derivative. Treating the first derivatives at the knots as free parameters, we derive suitable values for these parameters so that the resulting cubic FIF enjoys global smoothness. Consequently, our method offers an alternative to the standard moment construction of -cubic spline FIFs. Furthermore, we identify appropriate values for the scaling factors in each subinterval and the derivatives at the knots so that the graph of the resulting -cubic FIF lies within a prescribed rectangle. These parameters include, in particular, conditions for the positivity of the cubic FIF. Thus, in the current article, we initiate the study of the shape preserving aspects of fractal interpolation polynomials. We also provide numerical examples to corroborate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahlberg, J., Nilson, E., Walsh, J.: The Theory of Splines and Their Applications. Academic Press, New York (1967)

    MATH  Google Scholar 

  2. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57(1), 14–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20(5), 1218–1242 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkhoff, G., Schultz, M.H., Varga, R.S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11, 232–256 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boehm, W., Farin, G., Kahmann, J.: A survey of curve and surface methods in CAGD. CAGD 1, 1–60 (1984)

    MATH  Google Scholar 

  7. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chand, A.K.B., Kapoor, G.P.: Cubic spline coalescence fractal interpolation through moments. Fractals 15(1), 41–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chand, A.K.B., Navascués, M.A.: Natural bicubic spline fractal interpolation. Nonlinear Anal. TMA 69, 3679–3691 (2008)

    Article  MATH  Google Scholar 

  10. Chand, A.K.B., Navascués, M.A.: Generalized Hermite fractal interpolation. Rev. R. Acad. Cienc. Zaragoza 64(2), 107–120 (2009)

    MATH  Google Scholar 

  11. Chand, A.K.B., Viswanathan, P.: Cubic Hermite and cubic spline fractal interpolation functions. AIP Conf. Proc. 1479, 1467–1470 (2012)

    Article  Google Scholar 

  12. Costantini, P., Manni, C.: Curve and surface construction using Hermite subdivision schemes. J. Comput. Appl. Math. 233, 1660–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dalla, L., Drakopoulos, V.: On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 101, 289–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dalla, L., Drakopoulos, V., Prodromou, M.: On the box dimension for a class of nonaffine fractal interpolation functions. Anal. Theory Appl. 19, 220–233 (2003)

    Article  MathSciNet  Google Scholar 

  15. Dyn, N., Levin, D.: Analysis of Hermite-type subdivision schemes. In: Chui, C.K., Schumaker, L. (eds.) Approximation Theory, vol. VIII. World Scientific, Singapore (1995)

    Google Scholar 

  16. Dyn, N., Levin, D.: Analysis of Hermite-interpolatory subdivision schemes. In: Proceedings of Work Shop: Spline Functions and Wavelets (1997)

    Google Scholar 

  17. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Falconer, K.: Fractal Geometry: Mathematical Foundation and Applications. Wiley, New York (1990)

    Google Scholar 

  19. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levkovich-Maslyuk, L.I.: Wavelet-based determination of generating matrices for fractal interpolation functions. Regul. Chaotic Dyn. 3, 20–29 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Massopust, P.R.: Fractal Functions, Fractal Surfaces and Wavelets. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  22. Merrien, J.L.: A family of Hermite interpolants by bisection algorithms. Numer. Algorithms 2, 187–200 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moisy, F.: Computing a fractal dimension with Matlab: 1D, 2D and 3D box-counting. Laboratory FAST, University Paris Sud. http://www.fast.u-psud.fr/~moisy/ml/boxcount/html/demo.htm

  24. Navascués, M.A., Sebastián, M.V.: Generalization of Hermite functions by fractal interpolation. J. Approx. Theory 131(1), 19–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmidt, J.W., Heß, W.: Positivity of cubic polynomials on intervals and positive spline interpolation. BIT Numer. Math. 28, 340–352 (1988)

    Article  MATH  Google Scholar 

  26. Schultz, M.H.: Spline Analysis. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  27. Schwanecke, U., Juetller, B.: A B-spline approach to Hermite subdivision. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curve and Surface Fitting, pp. 385–392. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for extensive comments and constructive criticisms that improved the presentation of the paper. Special thanks to the referee for bringing the area of recursive subdivision to our attention and suggesting some references. It is our pleasure to thank Professor Rosemary Renaut for the unusually careful editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. B. Chand.

Additional information

Communicated by Rose Marie Renaut.

The first author is thankful to the Department of Science & Technology, India for the SERC DST Project No. SR/S4/MS: 694/10. The research of the second author is partially supported by the Council of Scientific & Industrial Research, India, Grant No. 09/084(0531)/2010-EMR-I. A part of the results in this article was presented at the 10th International Conference of Numerical Analysis and Applied Mathematics, Greece [11].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chand, A.K.B., Viswanathan, P. A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects. Bit Numer Math 53, 841–865 (2013). https://doi.org/10.1007/s10543-013-0442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0442-4

Keywords

Mathematics Subject Classification (2010)

Navigation