Skip to main content
Log in

Splitting schemes for hyperbolic heat conduction equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Rapid processes of heat transfer are not described by the standard heat conduction equation. To take into account a finite velocity of heat transfer, we use the hyperbolic model of heat conduction, which is connected with the relaxation of heat fluxes. In this case, the mathematical model is based on a hyperbolic equation of second order or a system of equations for the temperature and heat fluxes. In this paper we construct for the hyperbolic heat conduction equation the additive schemes of splitting with respect to directions. Unconditional stability of locally one-dimensional splitting schemes is established. New splitting schemes are proposed and studied for a system of equations written in terms of the temperature and heat fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abrashin, V.: On a variant of alternating direction method for solving multidimensional problems of mathematical physics. Differ. Equ. 26(7), 243–250 (1990)

    MATH  Google Scholar 

  2. Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Numer. Math. 54(1), 23–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanes, S., Casas, F., Murua, A.: On the linear stability of splitting methods. Found. Comput. Math. 8(3), 357–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (1991)

    Book  MATH  Google Scholar 

  5. Cattaneo, M.: Sur une forme de l’equation de la chaleur eliminant le paradox d’une propagation instantanee. C. R. Acad. Sci., Ser. I. Math. 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  6. Čiegis, R.: Numerical solution of hyperbolic heat conduction equation. Math. Model. Anal. 14(1), 11–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crank, J.: The Mathematics of Diffusion. Oxford University Press, New York (1979)

    MATH  Google Scholar 

  8. Dai, W., Li, Q., Nassar, R., Shen, L.: An unconditionally stable three level finite difference scheme for solving parabolic two-step micro heat transport equations in a three-dimensional double-layered thin film. Int. J. Numer. Methods Eng. 59(4), 493–509 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glass, D., Özişik, M., McRae, D., Vick, B.: On the numerical solution of hyperbolic heat conduction. Numer. Heat Transf., Part B, Fundam. 8(4), 497–504 (1985)

    Article  Google Scholar 

  10. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A discontinuous Galerkin method for a hyperbolic model for convection-diffusion problems in CFD. Int. J. Numer. Methods Eng. 71(11), 1342–1364 (2007)

    Article  MATH  Google Scholar 

  11. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A finite element formulation for a convection-diffusion equation based on Cattaneo’s law. Comput. Methods Appl. Mech. Eng. 196(9–12), 1757–1766 (2007)

    Article  MATH  Google Scholar 

  12. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A hyperbolic model for convection-diffusion transport problems in CFD. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 102(2), 319–334 (2008)

    Article  MATH  Google Scholar 

  13. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45(2), 219–226 (2008)

    Article  Google Scholar 

  14. Incropera, F., DeWitt, D., Bergman, T., Lavine, A.: Fundamentals of Heat and Mass Transfer. Wiley, New York (1996)

    Google Scholar 

  15. Joseph, D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  17. Marchuk, G.: Splitting and alternating direction methods. In: Handbook of Numerical Analysis, vol. 1. pp. 197–462 (1990)

    Google Scholar 

  18. Moosaie, A., Atefi, G.: A comparative study on various time integration schemes for heat wave simulation. Comput. Mech. 43(5), 641–649 (2009)

    Article  MathSciNet  Google Scholar 

  19. Roberts, J., Thomas, J.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, vol. 2. pp. 523–639 (1990)

    Google Scholar 

  20. Samarskii, A.: The Theory of Difference Schemes. CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  21. Samarskii, A., Nikolaev, E.: Numerical Methods for Grid Equations. Birkhäuser, Basel (1989)

    Book  MATH  Google Scholar 

  22. Samarskii, A.A., Vabishchevich, P.N.: Regularized difference schemes for evolutionary second order equations. Math. Models Methods Appl. Sci. 2(3), 295–315 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Samarskii, A., Vabishchevich, P.: Computational Heat Transfer. Wiley, New York (1995)

    Google Scholar 

  24. Samarskii, A., Vabishchevich, P.: Regularization principle and stability of difference schemes. Fundam. Appl. Math. 4(3), 1097–1113 (1998)

    MathSciNet  Google Scholar 

  25. Samarskii, A., Vabishchevich, P.: Regularized additive full approximation schemes. Dokl. Math. 57(1), 83–86 (1998)

    Google Scholar 

  26. Samarskii, A., Vabishchevich, P.: Additive Schemes for Problems of Mathematical Physics. Nauka, Moscow (1999)

    Google Scholar 

  27. Samarskii, A., Matus, P., Vabishchevich, P.: Difference Schemes with Operator Factors. Kluwer Academic, Dordrecht (2002)

    Book  MATH  Google Scholar 

  28. Shashkov, A., Bubnov, V., Yanovskii, S.: Wave Phenomena of Heat Conduction: System Structural Approach. URSS, Moscow (2004)

    Google Scholar 

  29. Shen, W., Han, S.: A numerical solution of two-dimensional hyperbolic heat conduction with non-linear boundary conditions. Heat Mass Transf. 39(5), 499–507 (2003)

    Google Scholar 

  30. Sheng, W.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9(2), 199–212 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2000)

    Google Scholar 

  32. Tamma, K., Namburu, R.: Hyperbolic heat-conduction problems—numerical simulations via explicit Lax-Wendroff-based finite element formulations. J. Thermophys. Heat Transf. 5, 232–239 (1991)

    Article  Google Scholar 

  33. Vabishchevich, P.: Vector additive difference schemes for first-order evolutionary equations. Comput. Math. Math. Phys. 36(3), 317–322 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Vabishchevich, P.: Operator-difference schemes for a class of systems of evolution equations. Math. Notes 93(1), 28–41 (2013)

    Google Scholar 

  35. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall, New York (2007)

    Google Scholar 

  36. Yanenko, N.: The Method of Fractional Steps. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  37. Yang, H.: Characteristics-based, high-order accurate and nonoscillatory numerical method for hyperbolic heat conduction. Numer. Heat Transf., Part B, Fundam. 18(2), 221–241 (1990)

    Article  MATH  Google Scholar 

  38. Zhang, J., Zhao, J.: Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation. J. Comput. Phys. 170(1), 261–275 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr N. Vabishchevich.

Additional information

Communicated by Jan Hesthaven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vabishchevich, P.N. Splitting schemes for hyperbolic heat conduction equation. Bit Numer Math 53, 755–778 (2013). https://doi.org/10.1007/s10543-013-0423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0423-7

Keywords

Mathematics Subject Classification (2010)

Navigation