Skip to main content
Log in

A quadrature based method for evaluating exponential-type functions for exponential methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present a quadrature-based method to evaluate exponential-like operators required by different kinds of exponential integrators. The method approximates these operators by means of a quadrature formula that converges like O(e cK), with K the number of quadrature nodes, and it is useful when solving parabolic equations. The approach allows also the evaluation of the associated scalar mappings. The method is based on numerical inversion of sectorial Laplace transforms. Several numerical illustrations are provided to test the algorithm, including examples with a mass matrix and the application of the method inside the MATLAB package EXP4, an adaptive solver based on an exponential Runge–Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berland, H., Skaflestad, B., Wright, W.M.: EXPINT—A MATLAB package for exponential integrators. ACM Trans. Math. Softw. 33, Art. N. 4 (2007)

    Article  Google Scholar 

  2. Calvo, M.P., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102, 367–381 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.N.: Data-sparse approximation to the operator-valued functions of elliptic operators. Math. Comput. 73, 1297–1324 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.N.: Data-sparse approximation to a class of operator-valued functions. Math. Comput. 74, 681–708 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hochbruck, M., Lubich, C.: Error analysis of Krylov methods in a nutshell. SIAM J. Sci. Comput. 19, 695–701 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hochbruck, M., Ostermann, A.: Exponential Runge–Kutta methods for parabolic problems. Appl. Numer. Math. 53, 323–339 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. López-Fernández, M., Lubich, C., Palencia, C., Schädle, A.: Fast Runge–Kutta approximation of inhomogeneous parabolic equations. Numer. Math. 102, 277–291 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl. Numer. Math. 51, 289–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. McLean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 24, 439–463 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. Math. Comput. 69, 177–195 (2000)

    MATH  Google Scholar 

  19. Stenger, F.: Approximations via Whittaker’s cardinal function. J. Approx. Theory 17, 222–240 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165–224 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23, 97–120 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Weideman, J.A.C.: Optimizing Talbot’s contours for the inversion of the Laplace transform. SIAM J. Numer. Anal. 44, 2342–2362 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76, 1341–1356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María López-Fernández.

Additional information

Communicated by Timo Eirola.

Supported by DGI-MCYT under projects MTM 2008-03541 and MTM 2007-63257, cofinanced by FEDER funds, and the SIMUMAT project S-0505/ESP/0158 of the Council of Education of the Regional Government of Madrid (Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Fernández, M. A quadrature based method for evaluating exponential-type functions for exponential methods. Bit Numer Math 50, 631–655 (2010). https://doi.org/10.1007/s10543-010-0273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0273-5

Keywords

Mathematics Subject Classification (2000)

Navigation