Skip to main content
Log in

Effect of Transketolase Substrates on Holoenzyme Reconstitution and Stability

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The influence of transketolase substrates on the interaction of apotransketolase with its coenzyme thiamine diphosphate (TDP) and on the stability of the reconstituted holoenzyme was studied. Donor substrates increased the affinity of the coenzyme for transketolase, whereas acceptor substrate did not. In the presence of magnesium ions, the active centers of transketolase initially identical in TDP binding lose their equivalence in the presence of donor substrates. The stability of transketolase depended on the cation type used during its reconstitution—the holoenzyme reconstituted in the presence of calcium ions was more stable than the holoenzyme produced in the presence of magnesium ions. In the presence of donor substrate, the holoenzyme stability increased without depending on the cation used during the reconstitution. Donor substrate did not influence the interaction of apotransketolase with the inactive analog of the coenzyme N3′-pyridyl thiamine diphosphate and did not stabilize the transketolase complex with this analog. The findings suggest that the effect of the substrate on the interaction of the coenzyme with apotransketolase and on stability of the reconstituted holoenzyme is caused by generation of 2-(α,β-dihydroxyethyl)thiamine diphosphate (an intermediate product of the transketolase reaction), which has higher affinity for apotransketolase than TDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TK:

transketolase

TDP:

thiamine diphosphate

DHETDP:

2-(α,β-dihydroxyethyl)thiamine diphosphate

REFERENCES

  1. Kochetov, G. A. (1982) Meth. Enzymol., 90, 209–223.

    PubMed  Google Scholar 

  2. Kochetov, G. A., and Philippov, P. P. (1970) Biochem. Biophys. Res. Commun., 38, 930–933.

    Article  PubMed  Google Scholar 

  3. Nikkola, M., Lindqvist, Y., and Schneider, G. (1994) J. Biol. Chem., 238, 387–404.

    Google Scholar 

  4. Sundstrom, M., Lindqvist, Y., and Schneider, G. (1992) FEBS Lett., 313, 229–231.

    Article  PubMed  Google Scholar 

  5. Kochetov, G. A., Tikhomirova, N. K., and Philippov, P. P. (1975) Biochem. Biophys. Res. Commun., 63, 924–930.

    Article  PubMed  Google Scholar 

  6. Egan, R. M., and Sable, H. Z. (1981) J. Biol. Chem., 256, 4877–4883.

    PubMed  Google Scholar 

  7. Kovina, M. V., Selivanov, V. A., Kochevova, N. V., and Kochetov, G. A. (1998) Biochemistry (Moscow), 63, 988–995.

    Google Scholar 

  8. Kovina, M. V., Selivanov, V. A., Kochevova, N. V., and Kochetov, G. A. (1997) FEBS Lett., 418, 11–14.

    Article  PubMed  Google Scholar 

  9. Selivanov, V. A., Kovina, M. V., Kochevova, N. V., Meshalkina, L. E., and Kochetov, G. A. (2003) J. Mol. Catal. B: Enzymatic, 26, 33–40.

    Article  Google Scholar 

  10. Heinrich, P. C., Steffen, H., Janser, P., and Wiss, O. (1972) Eur. J. Biochem., 30, 533–541.

    Article  PubMed  Google Scholar 

  11. Heinrich, P. C., and Schmidt, D. (1973) Experientia, 29, 1226–1227.

    Article  PubMed  Google Scholar 

  12. Lindqvist, Y., Schneider G., Ermler, U., and Sundstrom, M. (1992) EMBO J., 11, 218–223.

    Google Scholar 

  13. Kochetov, G. A., and Izotova, A. E. (1973) Biokhimiya, 38, 954–957.

    Google Scholar 

  14. Fiedler, E., Thorell, S., Sandalova, T., Golbik, R., Konig, S., and Schneider, G. (2002) Proc. Natl. Acad. Sci. USA, 99, 591–595.

    Article  PubMed  Google Scholar 

  15. Schellenberger, A., Wendler, K., Creutzburg, P., and Hubner, G. (1967) Hoppe-Seyler’s Z. Physiol. Chem., 348, 501–508.

    PubMed  Google Scholar 

  16. Wikner, C., Meshalkina, L., Nilsson, U., Nikkola, M., Lindqvist, Y., Sundstrom, M., and Schneider, G. (1994) J. Biol. Chem., 269, 32144–32150.

    PubMed  Google Scholar 

  17. Heinrich, C. P., Noack, K., and Wiss, O. (1972) Biochem. Biophys. Res. Commun., 49, 1427–1432.

    Article  PubMed  Google Scholar 

  18. Kochetov, G. A., Usmanov, R. A., and Mevkh, A. T. (1973) Biochem. Biophys. Res. Commun., 54, 1619–1626.

    Article  PubMed  Google Scholar 

  19. Kochetov, G. A., Meshalkina, L. E., and Usmanov, R. A. (1976) Biochem. Biophys. Res. Commun., 69, 836–843.

    Article  Google Scholar 

  20. Meshalkina, L. E., and Kochetov, G. A. (1979) Dokl. Akad. Nauk SSSR, 248, 1482–1486.

    Google Scholar 

  21. Meshalkina, L. E., Usmanov, R. A., and Kochetov, G. A. (1990) in Biochemistry and Physiology of Thiamine Diphosphate Enzymes (Bisswanger, H., and Ullrich, J., eds.) Verlag Chemie, Weinheim, pp. 343–352.

    Google Scholar 

  22. Dixon, M. (1972) Biochem. J., 129, 197–203.

    PubMed  Google Scholar 

  23. Usmanov, R., Sidorova, N., and Kochetov, G. (1996) Biochem. Mol. Biol. Int., 38, 307–314.

    PubMed  Google Scholar 

  24. Pustynnikov, M. G., Neef, H., Usmanov, R. A., Shellenberger, A., and Kochetov, G. A. (1986) Biokhimiya, 51, 1003–1016.

    Google Scholar 

  25. Meshalkina, L. E., Golbik, R., Usmanov, R. A., Neef, H., Shellenberger, A., and Kochetov, G. A. (1989) Dokl. Akad. Nauk SSSR, 307, 486–490.

    Google Scholar 

  26. Konig, S., Schellenberger, A., Neef, H., and Schneider, G. (1994) J. Biol. Chem., 269, 10879–10882.

    PubMed  Google Scholar 

  27. Hennig, J., Kern, G., Neef, H., Bisswanger, H., and Hubner, G. (1996) in Biochemistry and Physiology of Thiamine Diphosphate Enzymes (Bisswanger, H., and Ullrich, J., eds.) Verlag Chemie, Weinheim, pp. 235–242.

    Google Scholar 

  28. Hubner, G., Kern, G., Hennig, J., Neef, H., and Bisswanger, H. (1996) in Biochemistry and Physiology of Thiamine Diphosphate Enzymes (Bisswanger, H., and Ullrich, J., eds.) Verlag Chemie, Weinheim, pp. 243–251.

    Google Scholar 

  29. Yi, J., Nemeria, N., McNally, A., and Jordan, F. (1996) J. Biol. Chem., 271, 33192–33200.

    Article  PubMed  Google Scholar 

  30. Sumegi, B., and Alkonyi, I. (1983) Eur. J. Biochem., 136, 347–353.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kochetov.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 7, 2005, pp. 933–940.

Original Russian Text Copyright © 2005 by Esakova, Khanova, Meshalkina, Golbik, Hubner, Kochetov.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-131, December 5, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esakova, O.A., Khanova, E.A., Meshalkina, L.E. et al. Effect of Transketolase Substrates on Holoenzyme Reconstitution and Stability. Biochemistry (Moscow) 70, 770–776 (2005). https://doi.org/10.1007/s10541-005-0182-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0182-4

Key words

Navigation