biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 59:645-653, 2015 | DOI: 10.1007/s10535-015-0532-z

Molecular cloning and characterization of the chloride channel gene family in trifoliate orange

Q. J. Wei1,2, Q. Q. Gu2, N. N. Wang1, C. Q. Yang1, S. A. Peng1,*
1 College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
2 College of Agronomy, Jiangxi Agricultural University, Nanchang, P.R. China

Chloride channels (CLCs) play pivotal roles in plant development and anion transport. However, little research has been conducted about the CLC in fruit-bearing plants. Here we provide an insight into the evolution and expression patterns of CLC gene family members in various tissues of trifoliate orange [Poncirus trifoliata (L.) Raf.] and their responses to several treatments. Genome-wide analysis identified six PtrCLC genes. The predicted proteins had similar numbers of amino acids, but shared a low sequence identity. Phylogenetic analysis revealed that PtrCLC were classified into two separate subgroups, and PtrCLC4 and PtrCLC6 in subgroup II were more closely related to bacterial CLCs. Sequence comparison with EcCLCA from Escherichia coli reveals that PtrCLC showed amino acid divergence in anion selectivity of CLC proteins. Real time qPCR analysis shows that PtrCLC genes, particularly PtrCLC6, preferentially expressed in leaves. Nitrogen deficiency irreversibly inhibited expression of PtrCLC genes except for PtrCLC1. In contrast, NaCl stress profoundly induced expression of PtrCLC genes, particularly PtrCLC2 and PtrCLC4, both of which were also upregulated by ABA treatment. The results presented here provide a solid foundation for a future functional research on citrus CLC genes.

Keywords: abscisic acid; gene expression; nitrogen supply; Poncirus trifoliata; salt stress; sequence analysis
Subjects: molecular cloning; chloride channel; anion transport; nitrogen supply; salinity; amino acid sequence; phylogenetic tree; trifoliate orange

Received: August 18, 2014; Revised: February 26, 2015; Accepted: March 4, 2015; Published: December 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wei, Q.J., Gu, Q.Q., Wang, N.N., Yang, C.Q., & Peng, S.A. (2015). Molecular cloning and characterization of the chloride channel gene family in trifoliate orange. Biologia plantarum59(4), 645-653. doi: 10.1007/s10535-015-0532-z
Download citation

Supplementary files

Download filebpl-201504-0006_S1.pdf

File size: 1.11 MB

References

  1. Basilio, D., Noack, K., Picollo, A., Accardi, A.: Conformational changes required for H+/Cl- exchange mediated by a CLC transporter. - Nat. struct. mol. Biol. 21: 456-463, 2014. Go to original source...
  2. Bergsdorf, E.Y., Zdebik, A.A., Jentsch, T.J.: Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. - J. biol. Chem. 284: 11184-11193, 2008. Go to original source...
  3. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., Abrams, S.R.: Abscisic acid: emergence of a core signaling network. - Annu. Rev. Plant Biol. 61: 651-679, 2010. Go to original source...
  4. De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J.M., Thomine, S., Gambale, F., Barbier-Brygoo, H.: The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. - Nature 442: 939-942, 2006. Go to original source...
  5. De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J.M., Thomine, S., Gambale, F., Barbier-Brygoo, H.: CLCmediated anion transport in plant cells. - Philos. Trans. roy. Soc. B-biol. Sci. 364: 195-201, 2009. Go to original source...
  6. Diedhiou, C., Golldack, D.: Salt-dependent regulation of chloride channel transcripts in rice. - Plant Sci. 170: 793-800, 2005. Go to original source...
  7. Dutzler, R.: The CLC family of chloride channels and transporters. - Curr. Opin. Struct. Biol. 16: 439-446, 2006. Go to original source...
  8. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T., MacKinnon, R.: X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. - Nature 415: 287-294, 2002. Go to original source...
  9. Gaxiola, R.A., Yuan, D.S., Klausner, R.D., Fink, G.R.: The yeast CLC chloride channel functions in cation homeostasis. - Proc. nat. Acad. Sci. USA 95: 4046-4050, 1998. Go to original source...
  10. Geelen, D., Lurin, C., Bouchez, D., Frachisse, J.M., Lelièvre, F., Courtial, B., Barbier-Brygoo, H., Maurel, C.: Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. - Plant J. 21: 259-267, 2000. Go to original source...
  11. Harada, H., Kuromori, T., Hirayama, T., Shinozaki, K., Leigh, R.A.: Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. - J. exp. Bot. 55: 2005-2014, 2004. Go to original source...
  12. Hechenberger, M., Wolf N Fischer, B.S., Frommer, W.B., Jentsch, T.J., Steinmeyer, K.: A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. - J. biol. Chem. 271: 33632-33638, 1996. Go to original source...
  13. Jentsch, T.J.: CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. - Crit. Rev. Biochem. mol. Biol. 43: 3-36, 2008. Go to original source...
  14. Jentsch, T.J., Neagoe, I., Scheel, O.: CLC chloride channels and transporters. - Curr. Opin. Neurobiol. 15: 319-325, 2005. Go to original source...
  15. Jossier, M., Kroniewicz, L., Dalmas, F., Le Thiec, D., Ephritikhine, G., Thomine, S., Barbier-Brygoo, H., Vavasseur, A., Filleur, S., Leonhardt, N.: The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. - Plant J. 64: 563-576, 2010. Go to original source...
  16. Li, W.Y.F., Wong, F.L., Tsai, S.N., Phang, T.H., Shao, G.H., Lam, H.M.: Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. - Plant Cell Environ. 29: 1122-1137, 2006. Go to original source...
  17. Lurin, C., Geelen, D., Barbier-Brygoo, H., Guern, J., Maurel, C.: Cloning and functional expression of a plant voltagedependent chloride channel. - Plant Cell 8: 701-711, 1996. Go to original source...
  18. Lv, Q.D., Tang, R.J., Liu, H., Gao, X.S., Li, Y.Z., Zheng, H.Q., Zhang, H.X.: Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family. - Plant Sci. 176: 650-661, 2009. Go to original source...
  19. Marmagne, A., Vinauger-Douard, M., Monachello, D., De Longevialle, A.F., Charon, C., Allot, M., Rappaport, F., Wollman, F.A., Barbier-Brygoo, H., Ephritikhine, G.: Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. - J. exp. Bot. 58: 3385-3393, 2007. Go to original source...
  20. Matulef, K., Maduke, M.: The CLC 'chloride channel' family: revelations from prokaryotes. - Mol. Membr. Biol. 24: 342-350, 2007. Go to original source...
  21. Monachello, D., Allot, M., Oliva, S., Krapp, A., Daniel-Vedele, F., Barbier-Brygoo, H., Ephritikhine, G.: Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways. - New Phytol. 183: 88-94, 2009. Go to original source...
  22. Nakamura, A., Fukuda, A., Sakai, S., Tanaka, Y.: Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). - Plant Cell Physiol. 47: 32-42, 2006. Go to original source...
  23. Pusch, M.: Structural insights into chloride and proton-mediated gating of CLC chloride channels. - Biochemistry 43: 1135-1144, 2004. Go to original source...
  24. Robinson, N.C., Huang, P., Kaetzel, M.A., Lamb, F.S., Nelson, D.J.: Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current. - J. Physiol. 556: 353-368, 2004. Go to original source...
  25. Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative CT method. - Natur. Protocols 3: 1101-1108, 2008. Go to original source...
  26. Teakle, N.L., Tyerman, S.D.: Mechanisms of Cl- transport contributing to salt tolerance. - Plant Cell Environ. 33: 566-589, 2010. Go to original source...
  27. Tregeagle, J.M., Tisdall, J.M., Tester, M., Walker, R.R.: Cluptake, transport and accumulation in grapevine rootstocks of differing capacity for Cl-exclusion. - Funct. Plant Biol. 37: 665-673, 2010. Go to original source...
  28. Von der Fecht-Bartenbach, J., Bogner, M., Dynowski, M., Ludewig, U.: CLC-b-mediated NO3 -/H+ exchange across the tonoplast of Arabidopsis vacuoles. - Plant Cell Physiol. 51: 960-968, 2010. Go to original source...
  29. Von der Fecht-Bartenbach, J., Bogner, M., Krebs, M., Stierhof, Y.D., Schumacher, K., Ludewig, U.: Function of the anion transporter AtCLC-d in the trans-Golgi network. - Plant J. 50: 466-474, 2007. Go to original source...
  30. Wang, S., Su, S.Z., Wu, Y., Li, S.P., Shan, X.H., Liu, H.K., Wang, S., Yuan, Y.P.: Overexpression of maize chloride channel gene Zm-CLC-d in Arabidopsis thaliana improved its stress resistance. - Biol. Plant 59: 55-64, 2015. Go to original source...
  31. Wang, Y.Y., Hsu, P.K., Tsay, Y.F.: Uptake, allocation and signaling of nitrate. - Trends Plant Sci. 17: 458-467, 2012. Go to original source...
  32. Wege, S., Jossier, M., Filleur, S., Thomine, S., Barbier-Brygoo, H., Gambale, F., De Angeli, A.: The proline 160 in the selectivity filter of the Arabidopsis NO3 -/H+ exchanger AtCLCa is essential for nitrate accumulation in planta. - Plant J. 63: 861-869, 2010. Go to original source...
  33. Wei, Q.J., Liu, Y.Z., Zhou, G.F., Li, Q.H., Yang, C.Q., Peng, S.A.: Overexpression of CsCLCc, a chloride channel gene from poncirus trifoliata, enhances salt tolerance in Arabidopsis. - Plant mol. Biol. Rep. 31: 1-10, 2013. Go to original source...
  34. Wong, T.H., Li, M.W., Yao, X.Q., Lam, H.M.: The GmCLC1 protein from soybean functions as a chloride ion transporter. - J. Plant Physiol. 170: 101-104, 2013. Go to original source...
  35. Xu, Q., Chen, L.L., Ruan, X., Chen, D., Zhu, A., Chen, C., Bertrand, D., Jiao, W.B., Hao, B.H., Lyon, M.P., et al.: The draft genome of sweet orange (Citrus sinensis). - Nat. Genet. 45: 59-66, 2013. Go to original source...
  36. Zhou, G.A., Qiu, L.J.: Identification and functional analysis on abiotic stress response of soybean Cl- channel gene GmCLCnt. - Agr. Sci. China 9: 199-206, 2010. Go to original source...
  37. Zifarelli G, Pusch M.: CLC transport proteins in plants. - Febs Lett. 584: 2122-2127, 2010. Go to original source...