biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 54:105-111, 2010 | DOI: 10.1007/s10535-010-0015-1

Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance

Y. Xue1, R. Peng1, A. Xiong1, X. Li1, D. Zha2, Q. Yao1,*
1 Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
2 Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China

In the yeast Saccharomyces cerevisiae, the molecular chaperone HSP26 has the remarkable ability to sense increases in temperature directly and can switch from an inactive to a chaperone-active state. In this report, we analyzed the effect of expression of HSP26 in Arabidopsis thaliana plants and their response to high temperature stress. The hsp26 transgenic plants exhibited stronger growth than wild type plants at 45 °C for 16 h. The chlorophyll content and chlorophyll fluorescence decreased much more in wild type than in transgenic plants. Moreover, the transgenic plants had higher proline and soluble sugar contents, and lower relative electrical conductivity and malondialdehyde contents after high temperature stress. Furthermore, we found that over-expression of HSP26 in Arabidopsis increased the amount of free proline, elevated the expression of proline biosynthetic pathway genes and therefore enhanced Arabidopsis tolerance to heat stress.

Keywords: high temperature stress; transgenic plants; yeast gene
Subjects: Arabidopsis thaliana; chlorophyll a,b; chlorophyll fluorescence; heat shock proteins (HSP); malondialdehyde; polymerase chain reaction (PCR); proline; Saccharomyces cerevisiae; sugars; temperature high; transgenic plants

Received: June 15, 2008; Accepted: January 7, 2009; Published: March 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Xue, Y., Peng, R., Xiong, A., Li, X., Zha, D., & Yao, Q. (2010). Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biologia plantarum54(1), 105-111. doi: 10.1007/s10535-010-0015-1
Download citation

References

  1. Farrar, J.F.: Carbon partitioning. - In: Hall, D.O., Scurlockm, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual. Pp. 232-246, Chapman and Hall, London 1993.
  2. Franzmann, T.M., Menhorn, P., Walter, S., Buchner, J.: Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. - Mol. Cells 29: 207-216, 2008. Go to original source...
  3. Gong, M.S., Chen, Y.S., Li. Z.: Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. - J. Plant Physiol. 24: 371-379, 1997. Go to original source...
  4. Haslbeck, M.: sHsps and their role in the chaperone network. - Cells Mol. Life Sci. 59: 1649-1657, 2002. Go to original source...
  5. Haslbeck, M., Ignatiou, A., Saibil, H., Helmich, S., Frenzl, E., Stromer, T., Buchner, J.: A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. - J. mol. Biol. 343: 445-455, 2004. Go to original source...
  6. Havaux, M., Lutz, C., Grimm, B.: Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. - Plant Physiol. 132: 300-310, 2003. Go to original source...
  7. Heckathorn, S.A., Downs, C.A., Sharkey, T.D., Coleman. J.S.: The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. - Plant Physiol. 116: 439-444, 1998. Go to original source...
  8. Howarth, C.J., Skot, K.P.: Detailed characterization of heat shock protein synthesis and induced thermotolerance in seedlings of Sorghum bicolor L. - J. exp. Bot. 45:1353-1363, 1994. Go to original source...
  9. Kavi, P.B., Hong, Z., Miao, G.H.: Over-expression of Δ1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. - Plant Physiol. 108: 1387-1394, 1995. Go to original source...
  10. Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K.: A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. - Plant Cell 8: 1323-1335, 1996. Go to original source...
  11. Lea, P.J., Blackwell, R.D.: Ammonia assimilation, photorespiration and amino acid biosynthesis. - In: Hall, D.O., Scurlockm, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual. Pp. 313-336, Chapman and Hall, London 1993. Go to original source...
  12. Lee, J.H., Hubel, A., Schöffl, F.: Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. - Plant J. 8: 603-612, 1995. Go to original source...
  13. Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Meth. Enzymol. 148: 350-382, 1987. Go to original source...
  14. Lin, C.Y., Chen, Y.M., Key, J.L.: Solute leakage in soybean seedlings under various heat shock regimes. - Plant Cell Physiol. 26: 1493-1498, 1985.
  15. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. - Methods 25: 402-408, 2001. Go to original source...
  16. Malik, M.K., Slove, J.P., Hwang, C.H., Zimmerman, J.L.: Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. - Plant J. 20: 89-99, 1999. Go to original source...
  17. Mani, S., Van de Cotte, B., Van Montagu, M., Verbruggen, N.: Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. - Plant Physiol. 128: 73-83, 2002. Go to original source...
  18. Mansfield, M.A., Lingle, W.L., Key, J.L.: The effect of lethal heat shock on nonadapted and thermotolerant root cells in Glycine max L. - J. Ultrastruct. Res. 99: 96-105, 1988. Go to original source...
  19. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. - J. exp. Bot. 345: 659-668, 2000. Go to original source...
  20. Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., Scharf, K.D.: In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. - Genes Dev. 16: 1555-1567, 2002. Go to original source...
  21. Murakami, T., Matusuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, T., Sato. Y.: Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance of rice Plants. - Mol. Breed. 13: 165-175, 2004. Go to original source...
  22. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  23. Ougham, H.J., Howarth. C.J.: Temperature shock proteins in plants. - Symp. Soc. exp. Biol. 42: 259-280, 1988.
  24. Prändl, R., Hinderhofer, K., Eggers-Schumacher, G., Schöffl, F.: HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. - Mol. gen. Genet. 258: 269-278, 1998. Go to original source...
  25. Sanmiya, K., Suzuki, K., Egawa, Y., Shono, M.: Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. - FEBS Lett. 557: 265-268, 2004. Go to original source...
  26. Smirnoff, N.: Antioxidant systems and plant response to the environment. - In: Smirnoff, N. (ed.): Environment and Plant Metabolism: Flexibility and Acclimation. Pp. 217-243, Bios Scientific Publishers, Oxford 1995.
  27. Strizhov, N., Abraham, E., Okresz, L., Blicking, S., Zilberstein, A., Schell, J., Koncz, C., Szabados, L.: Differential expression of two P5CS genes controlling proline accumulation during salt stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. - Plant J. 12: 557-569, 1997. Go to original source...
  28. Sugiyama, Y., Suzuki, A., Kishikawa, M., Akutsu, R., Hirose, T., Waye, M.M.Y., Tsui, S.K.W., Ohno, S.: Muscle develops a specific form of small heat shock protein complex composed of MKB/HSPB2 and HSPB3 during myogenic differentiation. - J. biol. Chem. 275: 1095-1104, 2000. Go to original source...
  29. Tang, Z.C.: The measurement of electrical conductivity. - In: Modern Experiment Procotols in Plant Physiology. Pp. 302-308. Beijing Science Press, Beijing 1999.
  30. Tarantino, D., Vianelli, A., Carraro, L., Soave, C.: A nuclear mutant of Arabidopsis thaliana selected for enhanced sensitivity to light-chill stress is altered in PSII electron transport activity. - Plant Physiol. 107: 361-371, 1999. Go to original source...
  31. Verbruggen, N., Hua, X.J., May, M., Van Montagu, M.: Environmental and developmental signals modulate praline homeostasis: evidence for a negative transcriptional regulator. - Proc. nat. Acad. Sci. USA 93: 8787-8791, 1996. Go to original source...
  32. Vierling, E.: The roles of heat shock proteins in plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 579-620, 1991. Go to original source...
  33. Voetberg, G.S., Sharp, R.E.: Growth of the maize primary root at low water potentials III. Roles of increased proline deposition in osmotic adjustment. - Plant Physiol. 96: 1125-1130, 1991. Go to original source...
  34. Wahid, A., Close, T.: Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. - Biol. Plant. 51: 104-109, 2007. Go to original source...
  35. Zhang, X., Henriques, R., Lin. S.S.: Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. - Nat. Protocol 1: 641-646, 2006. Go to original source...
  36. Zoran, R., Urska, B., Prasad, P.V.: Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. - Crop Sci. 47: 2067-2073, 2007. Go to original source...