biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 53:271-277, 2009 | DOI: 10.1007/s10535-009-0050-y

A new tip homolog, ShTIP, from Salicornia shows a different involvement in salt stress compared to that of TIP from Arabidopsis

N. Ermawati1, Y. S. Liang1, J.-Y. Cha1, D. Shin1, M. H. Jung1, J. J. Lee2, B.-H. Lee1, C.-D. Han1, K. H. Lee1, D. Son1,2,*
1 Division of Applied Life Science (BK21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
2 Department of Applied Biology and Environmental Science, Gyeongsang National University, Jinju, Korea

To obtain an insight into the comprehensive molecular characteristics of the salt tolerance mechanism, we performed a screening for salt inducible genes in a halophytic plant, Salicornia herbacea, using mRNA differential display. A comparative analysis of gene expression in Salicornia grown in control and salt-stressed conditions led to the detection of a gene that was induced by salt. Both sequence analysis and a subsequent database search revealed that this gene was highly homologous to tonoplast intrinsic proteins (TIPs) from a variety of plant species. This gene, designated as ShTIP, is 1014 bp in size and contains a coding region of 762 nucleotides, which encodes a protein of 254 amino acids. Northern blot analysis revealed that ShTIP was predominantly expressed in shoots under normal conditions. However, salt stress induced high expression of ShTIP in both the shoots and roots. The expression of ShTIP in a salt-sensitive calcineurin-deficient yeast mutant (cnbΔ) resulted in a resistance to the high salt conditions. In addition, we compared the expression of a TIP gene in Arabidopsis with that of ShTIP under different conditions and found that the Salicornia TIP has a different regulatory mechanism for adapting to salt stress conditions compared with the glycophyte Arabidopsis TIP. These results indicate that ShTIP plays an important role in salt tolerance.

Keywords: halophyte; glycophyte; Salicornia herbacea; salinity; tonoplast intrinsic protein
Subjects: abscisic acid (ABA); amino acids; aquaporins; Arabidopsis thaliana; gene expression; polyethyloene glycol; Salicornia herbacea; salinity; tonoplast intrinsic proteins (TIP)

Received: May 17, 2007; Accepted: January 9, 2008; Published: June 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ermawati, N., Liang, Y.S., Cha, J.-Y., Shin, D., Jung, M.H., Lee, J.J., ... Son, D. (2009). A new tip homolog, ShTIP, from Salicornia shows a different involvement in salt stress compared to that of TIP from Arabidopsis. Biologia plantarum53(2), 271-277. doi: 10.1007/s10535-009-0050-y
Download citation

References

  1. Adams, P., Thomas, J.C., Vernon, D.M., Bohnert, H.J., Jensen, R.G.: Distinct cellular and organismic responses to salt stress.-Plant Cell Physiol. 33: 1215-1223, 1992.
  2. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K.: Current Protocols in Molecular Biology.-Greene Publishing Associates, New York 1989.
  3. Blum, A., Munns, R., Passioura, J.B., Turner, N.C.: Genetically engineered plants resistant to soil dry and salt stress; how to interpret osmotic relation?-Plant Physiol. 110: 1050-1053, 1996. Go to original source...
  4. Boursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., Van den Dries, N., Maurel, C.: Early Effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression.-Plant Physiol. 139: 790-805, 2005. Go to original source...
  5. Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Plants use calcium to resolve salt stress.-Trends Plant Sci. 3: 411-412, 1998. Go to original source...
  6. Carvajal, M., Martinez, V., Alcaraz, C.F.: Physiological function of water channel as affected by salinity in roots of paprika pepper.-Physiol. Plant. 105: 95-101, 1999. Go to original source...
  7. Chrispeels, M.J., Morillon, R., Maurel, C., Gerbeau, P., Kjellbom, P., Johansson, I.: Aquaporins of plants; structure, function, regulation, and role in plant water relations.-Curr. Topic Membr. 51: 277-334, 2001. Go to original source...
  8. Dean, R.M., Rivers, R.L., Zeidel, M.L., Roberts, D.M.: Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties.-Biochemistry 38: 347-353, 1999. Go to original source...
  9. Dreyer, I., Horeau, C., Lemaillet, G., Zimmermann, S., Bush, D.R., Rodriguez-Navarro, A., Schachtman, D.P., Spaldind, E.P., Sentenac, H., Gaber, R,F.: Identification and characterization of plant transporter using heterologous expression system.-J. exp. Bot. 50: 1073-1087, 1997. Go to original source...
  10. Elble, R.: A simple and efficient procedure for transformation of yeast.-Biotechniques 13: 18-20, 1992.
  11. Frangne, N., Maeshima, M., Schaffner, A.R., Mandel, T., Martinoia, E., Bonnemain, J.L.: Expression and distribution of a vacuolar aquaporin in young and mature leaf tissues of Brassica napus in relation to water fluxes.-Planta 212: 270-278, 2000. Go to original source...
  12. Kaldenhoff, R., Grote, K., Zhu, J.-J., Zimmermann, U.: Significance of plasmalemma aquaporins for water transport in Arabidopsis thaliana.-Plant J. 14: 121-128, 1998. Go to original source...
  13. Karimi, G., Ghorbanli, M., Heidari, H., Khavari Nejad, R.A., Assareh, M.H.: The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrate.-Biol. Plant. 49: 301-304, 2005. Go to original source...
  14. Kawasaki, H., Takada, H., Kamisaka, S.: Requirement of sodium chloride for the action of gibberellic acid in stimulating hypocotyls elongation of a halophyte Salicornia herbacea L.-Plant Cell Physiol. 19: 1415-1425, 1978.
  15. Kirch, H.H., Vera-Estrella, R., Golldack, D., Quigley, F., Michalowski, C.B., Barkla, B.J., Bohnert, H.J.: Expression of water channel proteins in Mesembryanthemum crystallinum.-Plant Physiol. 123: 111-124, 2000. Go to original source...
  16. Kjellbom, P., Larsson, C., Johansson, I., Karlsson, M., Johanson, U.: Aquaporins and water homeostasis in plants.-Trends Plant Sci. 4: 308-314, 1999. Go to original source...
  17. Liu, L.H., Ludewig, U., Gassert, B., Frommer, W.B., Wiren, N.V.: Urea transport by nitrogen-related tonoplast intrinsic proteins in Arabidopsis.-Plant Physiol. 133: 1220-1228, 2003. Go to original source...
  18. Martre, P., Morillon, R., Barrieu, F., North, G.B., Nobel, P.S., Chrispeels, M.J.: Plasma membrane aquaporins play a significant role during recovery from water deficit.-Plant Physiol. 130: 2101-2110, 2002. Go to original source...
  19. Mendoza, I., Quintero, F.J., Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells.-J. biol Chem. 271: 23061-23067, 1996. Go to original source...
  20. Miller, A.J., Zhou, J.J.: Xenopus oocyte as an expression system for plant transporters.-Biochim. biophys. Acta 1465: 343-358, 2000. Go to original source...
  21. Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Ion homeostasis in NaCl stress environments.-Plant Physiol. 109: 735-742, 1995. Go to original source...
  22. Pardo, J.M., Reddy, M., Yang, S., Maggio, A., Huh, G.H., Matsumoto, T., Coca, M.A., Koiwa, H., Yun, D.J., Watad, A.A., Bressan, R.A., Hasegawa, P.M.: Stress signaling through Ca+ calmodulin-dependent protein phosphate calcineurin modulates salt adaptation in plants.-Proc. nat. Acad. Sci. USA 95: 9681-9686, 1998. Go to original source...
  23. Parks, G.E., Dietrich, M.E., Schumaker, K.S.: Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl.-J. exp. Bot. 53: 1055-1065, 2002. Go to original source...
  24. Pih, K.T., Kabilan, V., Lim, J.H., Kang, S.G., Piao, H.L., Jin, J.B. Hwang, I.: Characterization of two new channel protein genes in Arabidopsis.-Mol. Cells 9: 84-90, 1999.
  25. Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., Maeshima, M.: Identification of 33 rice aquaporin genes and analysis of their expression and function.-Plant Cell Physiol. 46: 1568-1577, 2005. Go to original source...
  26. Sambrook, J., Russell, D.W.: Molecular Cloning: A Laboratory Manual. 3rd Ed.-Cold Spring Harbor Laboratory Press, New York 2001.
  27. Serrano, R., Rodriguez, P.L.: Plants, genes and ions.-EMBO J. 3: 116-119, 2002. Go to original source...
  28. Siefritz, F., Tyree, M.T., Lovisolo, C., Schubert, A., Kaldenhoff, R.: PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants.-Plant Cell 14: 869-876, 2002. Go to original source...
  29. Tyerman, S.D., Niemietz, C.M., Mramley, H.: Plant aquaporins: multi-functional water and solute channels with expending roles.-Plant Cell Environ. 25: 173-194, 2002. Go to original source...
  30. Yamaguchi-Shinozaki, K., Shinozaki, K.: Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants.-Mol. gen. Genet. 236: 331-340, 1993. Go to original source...
  31. Yeo, A.R.: Molecular biology of salt tolerance in the context of whole-plant physiology.-J. exp. Bot. 49: 915-929, 1998. Go to original source...