biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 50:603-609, 2006 | DOI: 10.1007/s10535-006-0095-0

Water relations in Norway spruce trees growing at ambient and elevated CO2 concentrations

P. Kupper1,*, A. Sellin1, Z. Klimánková2, R. Pokorný2, J. Puértolas3
1 Institute of Botany and Ecology, University of Tartu, Tartu, Estonia
2 Institute of Landscape Ecology, AS CR, Brno, Czech Republic
3 Centro Nacional de Mejora Forestal "El Serranillo", Guadalajara, Spain

Water relations were studied in Norway spruce [Picea abies (L.) Karst.] trees grown at ambient (AC, 350 μmol mol-1) and elevated (EC, 700 μmol mol-1) CO2 concentrations under temperate water stress. The results suggested that both crown position and variability in atmospheric CO2 concentration are responsible for different patterns of crown water relations. Mean hourly sap flux density (FSA) showed higher values in upper crown position in comparison with the whole crown in both AC and EC treatments. Mean soil-to-leaf hydraulic conductance (GTsa) was 1.4 times higher for the upper crown than that calculated across the whole crown for the trees in AC. However, GTsa did not vary significantly with crown position in EC trees, suggesting that elevated CO2 may mitigate differences in hydraulic supply for different canopy layers. The trees in EC treatment exhibited significantly higher values of FSA measured on the whole crown level and slightly higher soil water content compared to AC treatment, suggesting more economical use of soil water and therefore an advantage under water-limited conditions.

Keywords: CO2 enrichment; global change; Picea abies (L.) Karst; sap flux; shoot water potential; soil water limitation; whole-tree hydraulic conductance
Subjects: CO2 concentration, elevated, enrichment; gas exchange; hydraulic conductance; Norway spruce; Picea abies; potentials, osmotic, water; relative water content (RWC); sap flux; stomatal conductance; water stress

Received: December 7, 2004; Accepted: May 24, 2005; Published: December 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kupper, P., Sellin, A., Klimánková, Z., Pokorný, R., & Puértolas, J. (2006). Water relations in Norway spruce trees growing at ambient and elevated CO2 concentrations. Biologia plantarum50(4), 603-609. doi: 10.1007/s10535-006-0095-0
Download citation

References

  1. Atwell, B.J., Henry, M.L., Whitehead, D.: Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.-Tree Physiol. 23: 13-21, 2003. Go to original source...
  2. Bond, B.J., Farnsworth, B.T., Coulombe, R.A., Winner, W.E.: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance.-Oecologia 120: 183-192, 1999. Go to original source...
  3. Brodribb, T.J., Holbrook, N.M., Gutierrez, M.V.: Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees.-Plant Cell Environ. 25: 1435-1444, 2002. Go to original source...
  4. Bunce, J.A.: Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.-Oecologia 140: 1-10, 2004. Go to original source...
  5. Centritto, M., Magnani, F., Lee, H.S.J., Jarvis, P.G.: Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations.-New Phytol. 141: 141-154, 1999. Go to original source...
  6. Ceulemans, R., Jach, M.E., Van De Velde, R., Lin, J.X., Stevens, M.: Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L.) after three years of enrichment.-Global Change Biol. 8: 153-162, 2002. Go to original source...
  7. De Luis, I., Irigoyen, J.J., Sanchez-Diaz, M.: Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water status.-Physiol. Plant. 107: 84-89, 1999. Go to original source...
  8. Engel, V.C., Griffin, K.L., Murthy, R., Patterson, L., Klimas, C., Potosnak, M.: Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit.-Tree Physiol. 24: 1137-1145, 2004. Go to original source...
  9. Heath, J., Kerstiens, G.: Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech.-Plant Cell Environ. 20: 57-67, 1997. Go to original source...
  10. Herrick, J.D., Maherali, H., Thomas, R.B.: Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment.-New Phytol. 162: 387-396, 2004. Go to original source...
  11. Hubbard, R.M., Ryan, M.G., Stiller, V., Sperry, J.S.: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine.-Plant Cell Environ. 24: 113-121, 2001. Go to original source...
  12. Jarvis, A.J., Mansfield, T.A., Davies, W.J.: Stomatal behaviour, photosynthesis and transpiration under rising CO2.-Plant Cell Environ. 22: 639-648, 1999. Go to original source...
  13. Jerez, M., Dean, T.J., Roberts, S.D., Evans, D.L.: Patterns of branch permeability with crown depth among loblolly pine families differing in growth rate and crown size.-Trees 18: 145-150, 2004. Go to original source...
  14. Johnson, J.D., Tognetti, R., Paris, P.: Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.-Physiol. Plant. 115: 93-100, 2002. Go to original source...
  15. Köstner, B., Granier, A., Čermák, J.: Sapflow measurements in forest stands: methods and uncertainties.-Ann. Forest Sci. 55: 13-27, 1998. Go to original source...
  16. Long, S.P.: Understanding the impacts of rising CO2: the contribution of environmental physiology.-In: Press, M.C., Scholes, J.D., Barcer, M.G. (ed.): Physiological Plant Ecology. Pp. 263-282. Blackwell Science, Oxford 1999.
  17. Marek, M.V., Šprtová, M., Urban, O., Špunda, V.: Chlorophyll a fluorescence response of Norway spruce needles to the long-term effect of elevated CO2 in relation to their position within the canopy.-Photosynthetica 39: 437-455, 2001. Go to original source...
  18. Marek, M.V., Urban, O., Šprtová, M., Pokorný, R., Rosová, Z., Kulhavý, J.: Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under the long-term impact of elevated CO2 concentration.-Photosynthetica 40: 259-267, 2002. Go to original source...
  19. Mayr, S., Rothart, B., Dämon, B.: Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline.-J. exp. Bot. 54: 2563-2568, 2003. Go to original source...
  20. Medlyn, B.E., Barton, C.V.M., Broadmeadow, M,S.J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S.B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B.D., Strassemeyer, J., Wang, K., Curtis, P.S., Jarvis, P.G.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.-New Phytol. 149: 247-264, 2001. Go to original source...
  21. Meinzer, F.C.: Functional convergence in plant responses to the environment.-Oecologia 134: 1-11, 2003. Go to original source...
  22. Niinemets, Ü., Kull, O., Tenhunen, J.D.: An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.-Tree Physiol. 18: 681-696, 1998. Go to original source...
  23. Prichard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M.: Elevated CO2 and plant structure: a review.-Global Change Biol. 5: 807-837, 1999. Go to original source...
  24. Protz, C.G., Silins, U., Lieffers, V.J.: Reduction in branch sapwood hydraulic permeability as a factor limiting survival of lower branches of lodgepole pine.-Can. J. Forest Res. 30: 1088-1095, 2000. Go to original source...
  25. Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.-Oecologia 140: 543-550, 2004. Go to original source...
  26. Saxe, H., Ellsworth, D.S., Heath, J.: Tree and forest functioning in an enriched CO2 atmosphere.-New Phytol. 139: 395-436, 1998. Go to original source...
  27. Schulte, M., Herschbach, C., Rennenberg, H.: Interactive effects of elevated atmospheric CO2, mycorrhization and drought on long-distance transport of reduced sulphur in young pedunculate oak trees (Quercus robur L.).-Plant Cell Environ. 21: 917-926, 1998. Go to original source...
  28. Schäfer, K.V.R., Oren, R., Lai, C., Katul, G.G.: Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration.-Global Change Biol. 8: 895-911, 2002. Go to original source...
  29. Sellin, A., Kupper, P.: Within-crown variation in leaf conductance of Norway spruce: effects of irradiance, vapour pressure deficit, leaf water status and plant hydraulic constraints.-Ann. Forest Sci. 61: 419-429, 2004. Go to original source...
  30. Sellin, A., Kupper, P.: Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch.-Oecologia 142: 388-397, 2005. Go to original source...
  31. Tognetti, R., Longobucco, A., Miglietta, F., Rashi, A.: Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring.-Plant Cell Environ. 21: 613-622, 1998. Go to original source...
  32. Tognetti, R., Longobucco, A., Miglietta, F., Rashi, A.: Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring.-Tree Physiol. 19: 261-270, 1999. Go to original source...
  33. Tognetti, R., Peñuelas, J.: Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO2 spring.-Biol. Plant. 46: 411-418, 2003. Go to original source...
  34. Tognetti, R., Raschi, A., Jones, M.B.: Seasonal patterns of tissue water relations in three Mediterranean shrubs cooccurring at a natural CO2 spring.-Plant Cell Environ. 23: 1341-1351, 2000. Go to original source...
  35. Tyree, M.T., Ewers, F.W.: The hydraulic architecture of trees and other woody plants.-New Phytol. 119: 345-360, 1991. Go to original source...
  36. Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J., Marek, M.V.: Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration.-Photosynthetica 39: 395-401, 2001. Go to original source...
  37. Whitehead, D.: Regulation of stomatal conductance and transpiration in forest canopies.-Tree Physiol. 18: 633-644, 1998. Go to original source...
  38. Wullschleger, S.D., Norby, R.J.: Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE).-New Phytol. 150: 489-498, 2001. Go to original source...
  39. Wullschleger, S.D., Tchaplinski, T.J., Norby, R.J.: Plant water relations at elevated CO2-implications for water-limited environments.-Plant Cell Environ. 25: 319-331, 2002. Go to original source...