Skip to main content
Log in

Determination of iron species, including biomineralized jarosite, in the iron-hyperaccumulator moss Scopelophila ligulata by Mössbauer, X-ray diffraction, and elemental analyses

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Scopelophila ligulata is an Fe-hyperaccumulator moss growing in acidic environments, but the mechanism of Fe accumulation remains unknown. To understand the mechanism, we determined Fe species in S. ligulata samples. The moss samples were collected from four sites in Japan. The concentrations of Fe, P, S, Cl, and K in them were measured by induced coupled plasma mass spectrometry. Fe species in some of them were determined by Mössbauer spectroscopy and were confirmed by X-ray diffraction analysis. Fe species in S. ligulata samples were determined to be jarosite, ferritin, high-spin Fe(II) species, and akaganeite. To our knowledge, this is the first report on the biomineralization of jarosite in mosses. This result, combined with the fact that bacteria, a fungus, and a grass mineralize jarosite, suggests that its biomineralization is a common characteristic in a wide variety of living organisms. These findings indicate that the biomineralization of jarosite occurs not only in the region-specific species but in species adapted to a low-pH and metal-contaminated environment in different regions, provide a better understanding of the mechanism of Fe accumulation in the Fe-hyperaccumulator moss S. ligulata, and offer new insights into the biomineralization of jarosite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aikawa Y, Nagano I, Sakamoto S, Nishiyama M, Matsumoto S (1999) Contents of heavy metal elements in copper mosses: Scopelophila ligulata, Scopelophila cataractae, and Mielichhoferia japonica and their substrates. Soil Sci Plant Nutr 45:835–842

    Article  CAS  Google Scholar 

  • Ambe S (1989) Mössbauer study of iron in the tomato plant. Int J Radiat Appl Instrum Part A 40:671–675

    Article  CAS  Google Scholar 

  • Ambe S, Ambe F, Nozaki T (1987) Mössbauer study of iron in soybean seeds. J Agric Food Chem 35:292–296

    Article  CAS  Google Scholar 

  • Amils R, de la Fuente V, Rodríguez N, Zuluaga J, Menéndez N, Tornero J (2007) Composition, speciation and distribution of iron minerals in Imperata cylindrica. Plant Physiol Biochem 45:335–340

    Article  CAS  PubMed  Google Scholar 

  • Ancuceanu R, Dinu M, Hovaneţ MV, Anghel AI, Popescu CV, Negreş S (2015) A survey of plant iron content: a semi-systematic review. Nutrients 7:10320–10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron D, Palmer CD (1996) Solubility of jarosite at 4–35 °C. Geochim Cosmochim Acta 60:185–195

    Article  CAS  Google Scholar 

  • Barrero CA, García KE, Morales AL, Kodjikian S, Greneche JM (2006) New analysis of the Mössbauer spectra of akaganeite. J Phys 18:6827–6840

    CAS  Google Scholar 

  • Bauminger ER, Cohen SG, Dickson DPE, Levy A, Ofer S, Yariv J (1980) Mössbauer spectroscopy of Escherichia coli and its iron-storage protein. Biochim Biophys Acta 623:237–242

    Article  CAS  PubMed  Google Scholar 

  • Bell SH, Weir MP, Dickson DPE, Gibson JF, Sharp GA, Peters TJ (1984) Mössbauer spectroscopic studies of human haemosiderin and ferritin. Biochim Biophys Acta 787:227–236

    Article  CAS  PubMed  Google Scholar 

  • Bibi I, Singh B, Silvester E (2001) Akaganéite (β-FeOOH) precipitation in inland acid sulfate soils of south-western New South Wales (NSW), Australia. Geochim Cosmochim Acta 75:6429–6438

    Article  CAS  Google Scholar 

  • Bigham JM, Carlson L, Murad E (1994) Schwertmannite, a new iron oxyhydroxysulphate from Pyhäsalmi, Finland, and other localities. Miner Mag 58:641–648

    Article  CAS  Google Scholar 

  • Böhnke R, Matzanke BF (1995) The mobile ferrous iron pool in Escherichia coli is bound to a phosphorylated sugar derivative. Biometals 8:223–230

    Article  PubMed  Google Scholar 

  • Bou-Abdallah F (2010) The iron redox and hydrolysis chemistry of the ferritins. Biochim Biophys Acta 1800:719–731

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants, 2nd edn. Wiley, West Sussex

    Google Scholar 

  • Casas C, Brugues M, Cros RM, Sergio C (2006) Handbook of mosses of the Iberian Peninsula and the Balearic Islands. Institut d’Estudis Catalans, Barcelona

    Google Scholar 

  • Chambaere D, de Grave E (1984) On the Neel temperature of β-FeOOH: structural dependence and its applications. J Magn Magn Mater 42:263–268

    Article  CAS  Google Scholar 

  • Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron strage. J Struct Biol 126:182–194

    Article  CAS  PubMed  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • de Grave E, Vandenberghe RE (1986) 57Fe Mössbuaer effect study of well-crystallized goethite (α-FeOOH). Hyperfine Interact 28:643–646

    Article  Google Scholar 

  • Franco A, Rufo L, Fuente V (2015) Fe absorption and distribution of Imperata cylindrica (L.) P. Beauv. under controlled conditions. Environ Anal Toxicol 2:1. https://doi.org/10.4172/21610525.1000335

    Article  Google Scholar 

  • Frankel RB, Papaefthymiou GC (1987) Binding of Fe2+ by Mammalian Ferritin. Hyperfine Interact 33:233–240

    Article  CAS  Google Scholar 

  • Fuente V, Rufo L, Juárez BH, Menéndez N, García-Hernández M, Salas-Colera E, Espinosa A (2016) Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J Struct Biol 193:23–32

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Schulze DG (2010) Precipitation and transformation of secondary Fe oxyhydroxides in a histosol impacted by runoff from lead smelter. Clays Clay Miner 58:377–387

    Article  CAS  Google Scholar 

  • Goodman BA, DeKock PC (1982) Mössbauer studies of plant materials. I. Duckweed, stocks, soyabean and pea. J Plant Nutr 5:345–353

    Article  CAS  Google Scholar 

  • Hájek M, Plesková Z, Syrovátka V, Peterka T, Laburdová J, Kintrová K, Martin Jiroušek M, Hájek T (2014) Patterns in moss element concentrations in fens across species, habitats, and regions. Perspect Plant Ecol Evol Syst 16:203–218

    Article  Google Scholar 

  • Harmens H, Norris D, Mills G, and the participants of the moss survey (2013) Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe. ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, p 63

    Google Scholar 

  • Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pesch R, Rühling Å, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156

    Article  CAS  PubMed  Google Scholar 

  • Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, Blum O, Cucu-Man SM, Dam M, De Temmerman L, Ene A, Fernández JA, Martinez-Abaigar J, Frontasyeva M, Godzik B, Jeran Z, Lazo P, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pihl Karlsson G, Piispanen J, Poikolainen J, Santamaria JM, Skudnik M, Spiric Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Torodan R, Yurukova L, Zechmeister HG (2015) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104

    Article  CAS  PubMed  Google Scholar 

  • Herbert RB Jr (1997) Properties of goethite and jarosite precipitated from acidic groundwater, Dalarna, Sweden. Clays Clay Miner 45:261–273

    Article  CAS  Google Scholar 

  • Itouga M, Komatsu-Kato Y, Yamaguchi I, Ono Y, Sakakibara H (2006) Phytoremediation using bryophytes, 2. Bryo-filtration of copper in water using two species of Scopelophila. Hikobia 14:413–418

    Google Scholar 

  • Itouga M, Komatsu-Kato Y, Kiguchi H, Ono Y, Sakakibara H (2007) Iron analysis of sporophyte in Scopelophila ligulata using X-ray fluorescence micro-analyzer. Hikobia 15:105–108

    Google Scholar 

  • Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, Suzuki S, Nakatsuka S, Kawakami S, Kikuchi J, Sakakibara H (2017) Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent. PLoS ONE 12:e0189726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CE (1969) Antiferromagnetic of γ-FeOOH: a Mössbuaer effect study. J Phys C 2:1996–2002

    Article  CAS  Google Scholar 

  • Jones B, Renaut RW (2007) Selective mineralization of microbes in Fe-rich precipitates (jarosite, hydrous ferric oxides) from acid hot springs in the Waiotapu geothermal area, North Island, New Zealand. Sediment Geol 194:77–98

    Article  CAS  Google Scholar 

  • Kilcoyne SH, Bentley PM, Thongbai P, Gordon DC, Goodman BA (2000) The application of 57Fe Mössbauer spectroscopy in the investigation of iron uptake and translocation in plants. Nucl Instrum Meth Phys Res B 160:157–166

    Article  CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Klencsár Z, Kuzmann E, Vértes A (1996) User-freidnly software for Mössbuaer spectrum analysis. J Radioanal Nucl Chem 210:105–118

    Article  Google Scholar 

  • Klingelhöfer G, Morris RV, Bernhardt B, Schröder C, Rodionov DS, Souza PA Jr, Yen A, Gellert R, Evlanov EN, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gütlich P, Ming DW, Renz F, Wdowiak T, Squyres SW, Arvidson RE (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306:1740–1745

    Article  PubMed  Google Scholar 

  • Leclerc A (1980) Room temperature Mössbauer analysis of jarosite-type compounds. Phys Chem Miner 6:327–334

    Article  CAS  Google Scholar 

  • Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K, Saltzman MR, Porada P (2016) Earliest land plants created modern levels of atmospheric oxygen. Proc Natl Acad Sci USA 113:9704–9709

    Article  CAS  PubMed  Google Scholar 

  • Lo JC, Tsednee M, Lo YC, Yang SC, Hu JM, Ishizaki K, Kohchi T, Lee DC, Yeh KC (2016) Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. New Phytol 211:569–583

    Article  CAS  PubMed  Google Scholar 

  • Luna C, Ilyn M, Vega V, Prida VM, Gonzalez J, Mendoza-Resendez R (2014) Size distribution and frustrated antiferromagnetic coupling effects on the magnetic behavior of ultrafine akaganéite (β-FeOOH) aanoparticles. J Phys Chem C 118:21128–21139

    Article  CAS  Google Scholar 

  • Madden MEE, Bodnar RJ, Rimstidt JD (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431:821–823

    Article  CAS  PubMed  Google Scholar 

  • Matzanke BF, Bill E, Müller GI, Winkelmann G, Trautwein AX (1989) In vivo Mössbauer spectroscopy of iron uptake and ferrometabolism in Escherichia coli. Hyperfine Interact 47:311–327

    Article  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX (1992) Main components of iron metabolism in microbial systems—analyzed by in vivo Mössbauer spectroscopy. Hyperfine Interact 71:1259–1262

    Article  CAS  Google Scholar 

  • Murad E (1979) Mössbauer and X-ray data on β-FeOOH (akaganéite). Clay Miner 14:273–283

    Article  CAS  Google Scholar 

  • Murad E, Schwertmann U (1984) The influence of crystallinity on the Mössbuaer spectrum of lepidocrocite. Miner Mag 48:507–511

    Article  CAS  Google Scholar 

  • Nakajima H, Itoh K (2017) Relationship between metal and pigment concentrations in the Fe-hyperaccumulator moss Scopelophila ligulata. J Plant Res 130:135–141

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Itoh K, Otake H, Fujimoto K (2010) Photoabsorption study of pigments in mosses: scopelophila ligulata has an abnormally high formation rate of pheophytin. Chem Lett 39:284–285

    Article  CAS  Google Scholar 

  • Noguchi A (1988) Illustrated Moss Flora of Japan, Part 2. Hattori Botanical Laboratory, Hiroshima, p 328

    Google Scholar 

  • Oggerin M, Rodríguez N, del Moral C, Amils R (2014) Fungal jarosite biomineralization in Río Tinto. Res Microbiol 165:719–725

    Article  CAS  PubMed  Google Scholar 

  • Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71:13–50

    Article  CAS  PubMed  Google Scholar 

  • Oue K, Ohsawa S, Yusa Y (2002) Change in color of the hot spring deposits at the Chinoike-Jigoku hot pool. Beppu geothermal field. Geothermics 31:361–380

    Article  CAS  Google Scholar 

  • Post JE, Buchwald VF (1991) Crystal structure refinement of akaganéite. Am Miner 76:272–277

    CAS  Google Scholar 

  • Proctor MCF (2009) Physiological ecology. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, New York, pp 237–268

    Google Scholar 

  • Rodríguez N, Menéndez N, Tornero J, Amils R, de la Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165:781–789

    Article  CAS  PubMed  Google Scholar 

  • Ron E, Estébanez B, Alfayate C, Marfil R, Cortella A (1999) Mineral deposits in cells of Hookeria lucens. J Bryol 21:281–288

    Article  Google Scholar 

  • Shaw AJ (1990) Metal tolerance in bryophytes. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 133–152

    Google Scholar 

  • Shaw J, Antonovics J, Anderson LE (1987) Inter- and intraspecific variation of mosses in tolerance to copper and zinc. Evolution 41:1312–1325

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Stein RJ, Waldow VA, Fett JP (2010) Iron stress in plants: dealing with deprivation and overload. Plant Stress 4:57–69

    Google Scholar 

  • St Pierre TG, Bell SH, Dickson DPE, Mann S, Webb J, Moore GR, Williams RJP (1986) Mössbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins. Biochim Biophys Acta 870:127–134

    Article  CAS  PubMed  Google Scholar 

  • St Pierre TG, Carson KC, Webb J, Glenn AR, Dilworth MJ (1999) Evidence for polynuclear iron(III) clusters in the root nodule bacterium, Rhizobium leguminosarum bv. Viciae WSM710. Biometals 12:73–76

    Article  CAS  Google Scholar 

  • Stein RJ, Duarte GL, Spohr MG, Lopes SIG, Fett JP (2009) Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Ann Appl Biol 154:269–277

    Article  CAS  Google Scholar 

  • Takano M, Shinjo T, Takada T (1971) On the spin arrangement in “Kagome” lattice of antiferromagnetic KFe3(OH)6(SO4)2. J Phys Soc Jpn 30:1049–1053

    Article  CAS  Google Scholar 

  • Townsend MG, Longworth G, Roudaut E (1986) Triangular-spin, kagome plane in jarosites. Phys Rev B 33:4919–4926

    Article  CAS  Google Scholar 

  • Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linnean Soc 104:231–253

    Article  Google Scholar 

  • Urtizberea A, Luis F, Millan A, Natividad E, Palacio F, Kampert E, Zeitler U (2011) Thermoinduced magnetic moment in akaganeite nanoparticles. Phys Rev B 83:214426–214427

    Article  CAS  Google Scholar 

  • Wade VJ, Treffry A, Laulhère J-P, Bauminger ER, Cleton MI, Mann S, Briat J-F, Harrison PM (1993) Structure and composition of ferritin cores from pea seed (Pisum sativum). Biochim Biophys Acta 1161:91–96

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Bryan AM, Theil EC, Sayers DE, Bowen LH (1986) Structural variations in soluble iron complexes of models for ferritin: an X-ray absorption and mössbauer spectroscopy comparison of horse spleen ferritin to blutal (iron-chondroitin sulfate) and imferon (iron-dextran). J Inorg Biochem 28:393–405

    Article  CAS  PubMed  Google Scholar 

  • Ziegler S, Ackermann S, Majzlan J, Gescher J (2009) Matrix composition and community structure analysis of a novel bacterial pyrite leaching community. Environ Microbiol 11:2329–2338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yoshio Kobayashi and Prof. Kiyoshi Nomura for helpful comments. This study was partly supported by JSPS KAKENHI Grant No. 26340045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Nakajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, H., Okazawa, A., Kubuki, S. et al. Determination of iron species, including biomineralized jarosite, in the iron-hyperaccumulator moss Scopelophila ligulata by Mössbauer, X-ray diffraction, and elemental analyses. Biometals 32, 171–184 (2019). https://doi.org/10.1007/s10534-019-00169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00169-5

Keywords

Navigation