Skip to main content

Advertisement

Log in

The potential role of spherocrystals in the detoxification of essential trace metals following exposure to Cu and Zn in the fighting conch Strombus (Lobatus) pugilis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Crypt cells—one of the three cell types composing Strombidae digestive tubules—are characterized by the presence of numerous metal-containing phosphate granules termed spherocrystals. We explored the bioaccumulation and detoxification of metals in Strombidae by exposing wild fighting conch Strombus pugilis for 9 days to waterborne CuSO4 and ZnSO4. The total amount of Cu and Zn was determined in the digestive gland and in the rest of the body by Inductively Coupled Plasma (ICP) analyses. The digestive gland spherocrystal metal content was investigated based on the semi-quantitative energy dispersive X-ray (EDX) elemental analysis. ICP analyses of unexposed individuals revealed that 87.0 ± 5.9% of the Zn is contained in the digestive gland, where its concentration is 36 times higher than in the rest of the body. Regarding Cu, 25.8 ± 16.4% of the metal was located in the digestive gland of the control individuals, increasing to 61.5 ± 16.4% in exposed individuals. Both Cu and Zn concentrations in the digestive gland increased after exposures, pointing to a potential role of this organ in the detoxification of these metals. EDX analysis of spherocrystals revealed the presence of Ca, Cl, Fe, K, Mg, P, and Zn in unexposed individuals. No difference was found in the relative proportion of Zn in spherocrystals of exposed versus control individuals. Contrastingly, copper was never detected in the spherocrystals from controls and Zn-exposed individuals, but the relative proportion of Cu in spherocrystals of Cu-exposed individuals varied from 0.3 to 5.7%. Our results show the direct role of spherocrystals in Cu detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldana Aranda D (2003) El Caracol Strombus gigas: Conocimiento Integral Para Su Manejo Sustentable En El Caraibe. Impressos profesionales Aranda, Yucatan

    Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  PubMed  CAS  Google Scholar 

  • Ballan-Dufrançais C (2002) Localization of metals in cells of pterygote insects. Microsc Res Techniq 56:403–420

    Article  CAS  Google Scholar 

  • Baqueiro Cárdenas E, Frenkiel L, Zetina Zarate AI, Aldana Aranda D (2007) Coccidian (apicomplexa) parasite infecting Strombus gigas Linné, 1758 digestive gland. J Shellfish Res 26:319–321

    Article  Google Scholar 

  • Boghen A, Farley J (1974) Phasic activity in the digestive gland cells of the intertidal prosobranch, Littorina saxatilis (olivi) and its relations to the tidal cycle. J Molluscan Stud 41:41–55

    Article  Google Scholar 

  • Coelho L, Prince J, Nolen TG (1998) Processing of defensive pigment in Aplysia californica: acquisition, modification and mobilization of the red algal pigment, r-phycoerythrin by the digestive gland. J Exp Biol 201:425–438

    PubMed  CAS  Google Scholar 

  • Costa PM, Rodrigo AP, Costa MH (2014) Microstructural and histochemical advances on the digestive gland of the common cuttlefish, Sepia officinalis L. Zoomorphology 133:59–69

    Article  Google Scholar 

  • Delakorda SL, Letofsky-Papst I, Novak T, Giovannelli M, Hofer F, Pabst MA (2008) Application of elemental microanalysis to elucidate the role of spherites in the digestive gland of the helicid snail Chilostoma lefeburiana. J Microsc 231:38–46

    Article  PubMed  CAS  Google Scholar 

  • Devi C, Rao КH, Shyamasundari К (1981) Observations on the histology and cytochemistry of the digestive gland in Pila virens (Lamarck) (Mollusca: Gastropoda). Proc Anim Sci 90(3):307–314

    Article  Google Scholar 

  • Fretter V, Graham A (1962) British prosobranch molluscs: their functional anatomy and ecology. The Ray Society Series, London

    Google Scholar 

  • Gabe M (1968) Techniques histologiques. Paris Masson et Cie, Paris

    Google Scholar 

  • Gallien I, Caurant F, Bordes M, Bustamante P, Miramand P, Fernandez B, Quellard N, Babin P (2001) Cadmium-containing granules in kidney tissue of the atlantic white-sided dolphin (Lagenorhyncus acutus) off the Faroe islands. Comp Biochem Physiol C 130:389–395

    CAS  Google Scholar 

  • George SG, Pirie BJS, Coombs TL (1980) Isolation and elemental analysis of metal-rich granules from the kidney of the scallop, Pecten maximus (L.). J Exp Mar Biol Ecol 42:143–156

    Article  CAS  Google Scholar 

  • George SG, Coombs TL, Pirie BJS (1982) Characterization of metal-containing granules from the kidney of the common mussel, Mytilus edulis. BBA 716:61–71

    CAS  Google Scholar 

  • George SG, Pirie BJ, Frazier JM, Thomson JD (1984) Interspecies differences in heavy metal detoxication in oysters. Mar Environ Res 14:462–464

    Article  Google Scholar 

  • Gibbs PE, Nott JA, Nicolaidou A, Bebianno MJ (1998) The composition of phosphate granules in the digestive glands of marine prosobranch gastropods: variation in relation to taxonomy. J Molluscan Stud 64:423–433

    Article  Google Scholar 

  • Greaves GN, Simkiss K, Taylor M, Binsted N (1984) The local environment of metal sites in intracellular granules investigated by using X-ray-absorption spectroscopy. Biochem J 221:855–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gros O, Frenkiel L, Aldana Aranda D (2009) Structural analysis of the digestive gland of the queen conch Strombus gigas Linnaeus, 1758 and its intracellular parasites. J Molluscan Stud 75:59–68

    Article  Google Scholar 

  • Guo F, Tu R, Wang WX (2013) Different responses of abalone Haliotis discus hannai to waterborne and dietary-borne copper and zinc exposure. Ecotoxicol Environ Saf 91:10–17

    Article  PubMed  CAS  Google Scholar 

  • Henry M (1984a) Ultrastructure des tubules digestifs d’un mollusque bivalve marin, la palourde Ruditapes decussatus L., en métabolisme de routine. II la cellule sécrétrice. Vie Mar 6:17–24

    Google Scholar 

  • Henry M (1984b) Ultrastructure des tubules digestifs d’un mollusque bivalve marin, la palourde Ruditapes decussatus L., en métabolisme de routine. I la cellule digestive. Vie Mar 6:7–15

    Google Scholar 

  • Howard B, Mitchell PC, Ritchie A, Simkiss K, Taylor M (1981) The composition of intracellular granules from the metal-accumulating cells of the common garden snail (Helix aspersa). Biochem J 194:507–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenkins CD, Ward ME, Turnipseed M, Osterberg J, Lee Van Dover C (2002) The digestive system of the hydrothermal vent polychaete Galapagomystides aristata (Phyllodocidae): evidence for hematophagy? Invertebr Biol 121:243–254

    Article  Google Scholar 

  • Kojadinovic J, Jackson CH, Cherel Y, Jackson GD, Bustamante P (2011) Multi-elemental concentrations in the tissues of the oceanic squid Todarodes filippovae from Tasmania and the Southern Indian Ocean. Ecotoxicol Environ Safety 74(5):1238–1249

    Article  PubMed  CAS  Google Scholar 

  • Le Pabic C, Caplat C, Lehodey JP, Milinkovitch T, Koueta N, Cosson RP, Bustamante P (2015) Trace metal concentrations in post-hatching cuttlefish Sepia officinalis and consequences of dissolved zinc exposure. Aquat Toxicol 159:23–35

    Article  PubMed  CAS  Google Scholar 

  • Lobo-da-Cunha A (1997) The peroxisomes of the hepatopancreas in two species of chitons. Cell Tissue Res 290:655–664

    Article  PubMed  CAS  Google Scholar 

  • Lobo-da-Cunha A (1999) Ultrastructural and cytochemical aspects of the basophilic cells in the hepatopancreas of Aplysia depilans (Mollusca, Opisthobranchia). Tissue Cell 31:8–16

    Article  PubMed  CAS  Google Scholar 

  • Lobo-Da-Cunha A (2000) The digestive cells of the hepatopancreas in Aplysia depilans (Mollusca, Opisthobranchia): ultrastructural and cytochemical study. Tissue Cell 32:49–57

    Article  PubMed  CAS  Google Scholar 

  • Luchtel DL, Martin AW, Deyrup-Olsen I, Boer HH (1997) Gastropoda: Pulmonata. In: Harrison WF, Kohn AJ (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New York, p 459

    Google Scholar 

  • Lutfy RG, Demain ES (1967) The histology of the alimentary system of Marisa cornuarietis. Malacologia 5:375–422

    Google Scholar 

  • Marigómez I, Soto M, Cajaraville MP, Angulo E, Giamberini L (2002) Cellular and subcellular distribution of metals in molluscs. Microsc Res Technol 56:358–392

    Article  Google Scholar 

  • Martoja M, Marcaillou C (1993) Localisation cytologique du cuivre et de quelques autres métaux dans la glande digestive de la seiche, Sepia officinalis L. (mollusque céphalopode). Can J Fish Aquat Sci 50(3):542–550

    Article  Google Scholar 

  • Masala O, O’Brien P, Rainbow PS (2004) Analysis of metal-containing granules in the barnacle Tetraclita squamosa. J Inorg Biochem 98:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Merdsoy B, Farley J (1973) Phasic activity in the digestive gland cells of the marine prosobranch gastropod, Littorina littorea (L.). J Molluscan Stud 40:473–482

    Google Scholar 

  • Mitchell PCH, Parker SF, Simkiss K, Simmons J, Taylor MG (1996) Hydrated sites in biogenic amorphous calcium phosphates: an infrared, raman, and inelastic neutron scattering study. J Inorg Biochem 62:183–197

    Article  CAS  Google Scholar 

  • Morse MP, Zardas JD, Harrison FW, Kohn AJ (1997) Bivalvia. In: Harrison FW (ed) Microscopic anatomy of invertebrates, Mollusca II, vol 6A. Wiley-Liss, New York, p 7

    Google Scholar 

  • Mouneyrac C, Mastain O, Amiard JC, Amiard-Triquet C, Beaunier P, Jeantet AY, Smith BD, Rainbow PS (2003) Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar Biol 143:731–744

    Article  CAS  Google Scholar 

  • Nelson L, Morton JE (1979) Cyclic activity and epithelial renewal in the digestive gland tubules of the marine prosobranch Maoricrypta monoxyla (lesson). J Molluscan Stud 45:262–283

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1(1):3–26

    Article  CAS  Google Scholar 

  • Nott JA, Langston WJ (1989) Cadmium and the phosphate granules in Littorina littorea. J Mar Biol Assoc UK 69:219–227

    Article  CAS  Google Scholar 

  • Nott J, Nicolaidou A (1989) The cytology of heavy metal accumulations in the digestive glands of three marine gastropods. Proc R Soc London B 237:347–362

    Article  CAS  Google Scholar 

  • Nott JA, Nicolaidou A (1990) Transfer of metal detoxification along marine food chains. J Mar Biol Assoc UK 70:905–912

    Article  Google Scholar 

  • Nott JA, Nicolaidou A (1993) Bioreduction of zinc and manganese along a molluscan food chain. Comp Biochem Physiol A 104:235–238

    Article  Google Scholar 

  • Nott JA, Nicolaidou A (1996) Kinetics of metals in molluscan faecal pellets and mineralized granules, incubated in marine sediments. J Exp Mar Biol Ecol 197:203–218

    Article  CAS  Google Scholar 

  • Nott JA, Bebianno MJ, Langston WJ, Ryan KP (1993) Cadmium in the gastropod Littorina littorea. J Mar Biol Assoc UK 73:655–665

    Article  CAS  Google Scholar 

  • Owen G (1966) Digestion. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca. Academic Press, New York and London, p 53

    Chapter  Google Scholar 

  • Pal SG (1971) The fine structure of the digestive tubules of Mya arenaria L. basiphil cell. J Molluscan Stud 39:303–309

    Google Scholar 

  • Pal SG (1972) The fine structure of the digestive tubules of Mya arenaria L. II digestive cell. J Molluscan Stud 40:161–170

    Google Scholar 

  • Penicaud V, Lacoue-Labarthe T, Bustamante P (2017) Metal bioaccumulation and detoxification processes in cephalopods: a review. Environ Res 155:123–133

    Article  PubMed  CAS  Google Scholar 

  • Porcel D, Bueno J, Almendros A (1996) Alterations in the digestive gland and shell of the snail Helix aspersa Müller (Gastropoda, Pulmonata) after prolonged starvation. Comp Biochem Physiol A 115:11–17

    Article  Google Scholar 

  • Pullen JSH, Rainbow PS (1991) The composition of pyrophosphate heavy metal detoxification granules in barnacles. J Exp Mar Biol Ecol 150:249–266

    Article  CAS  Google Scholar 

  • Purchon RD (1968) The biology of the Mollusca. Pergamon Press, Hungary

    Google Scholar 

  • Rizo OD, Reumont SO, Fuente JV, Arado OD, Pino NL, Rodríguez KD, López JOA, Rudnikas AG, Carballo GA (2010) Copper, zinc and lead bioaccumulation in marine snail, Strombus gigas, from Guacanayabo Gulf, Cuba. Bull Environ Contam Toxicol 85:330–333

    Article  CAS  Google Scholar 

  • Sabri S, Said MIM, Azman S (2014a) Lead (Pb) and zinc (Zn) concentrations in marine gastropod Strombus canarium in Johor coastal areas. Malays J Anal Sci 18:37–42

    Google Scholar 

  • Sabri S, Said MIM, Azman S (2014b) Marine gastropod Strombus canarium as bioindicator for lead and zinc contamination. J Teknol 69:5–9

    Google Scholar 

  • Said MIM, Sabri S, Azman S, Muda K (2013) Arsenic, cadmium and copper in gastropod Strombus canarium in western part of Johor straits. World Appl Sci J 23:734–739

    Google Scholar 

  • Semmens JM (2002) Changes in the digestive gland of the loliginid squid Sepioteuthis lessoniana (lesson 1830) associated with feeding. J Exp Mar Biol Ecol 274:19–39

    Article  Google Scholar 

  • Spade DJ, Griffitt RJ, Liu L, Brown-Peterson NJ, Kroll KJ, Feswick A, Glazer OA, Barber DS, Denslow ND (2010) Queen conch (Strombus gigas) testis regresses during the reproductive season at nearshore sites in the Florida keys. PLoS ONE 5:1–14

    Article  CAS  Google Scholar 

  • Swift K, Johnston D, Moltschaniwskyj N (2005) The digestive gland of the southern dumpling squid (Euprymna tasmanica): structure and function. J Exp Mar Biol Ecol 315:177–186

    Article  Google Scholar 

  • Taïeb N (2001) Distribution of digestive tubules and fine structure of digestive cells of Aplysia punctata (Cuvier, 1803). J Molluscan Stud 67:169–182

    Article  Google Scholar 

  • Taïeb N, Vicente N (1999) Histochemistry and ultrastructure of the crypt cells in the digestive gland of Aplysia punctata (Cuvier, 1803). J Molluscan Stud 65:385–398

    Article  Google Scholar 

  • Taylor MG, Simkiss K, Greaves GN (1989) Metal environments in intracellular granules—iron. Phys B 158:112–114

    Article  CAS  Google Scholar 

  • Taylor MG, Greaves GN, Simkiss K (1990) Biotransformation of intracellular minerals by zinc ions in vivo and in vitro. Eur J Biochem 192:783–789

    Article  PubMed  CAS  Google Scholar 

  • Triebskorn R, Higgins R, Körtje K, Storch V (1996) Localization of iron stores and iron binding sites in blood cells of five different priapulid species by energy-filtering electron microscopy (EFTEM). J Trace Microprobe Tech 14:775–797

    CAS  Google Scholar 

  • Van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    Article  PubMed  Google Scholar 

  • Volland JM (2010) Interaction durable Strombidae-Sporozoairess et fonctionnement de l’organe hôte de la relation: la glande digestive. Doctoral dissertation, Université des Antilles Guyane

  • Volland JM, Gros O (2012) Cytochemical investigation of the digestive gland of two Strombidae species (Strombus gigas and Strombus pugilis) in relation to the nutrition. Microsc Res Tech 75:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Volland JM, Frenkiel L, Aldana Aranda D, Gros O (2010) Occurrence of sporozoa-like microorganisms in the digestive gland of various species of Strombidae. J Molluscan Stud 76:196–198

    Article  Google Scholar 

  • Volland JM, Lechaire JP, Frebourg G, Aldana Aranda D, Ramdine G, Gros O (2012) Insight of EDX analysis and EFTEM: are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals? Microsc Res Tech 75:425–432

    Article  PubMed  CAS  Google Scholar 

  • Voltzow J (1994) Gastropoda: Prosobranchia. In: Frederick W, Harrison W (eds) Microscopic anatomy of invertebrates. Wiley, New York, p 111

    Google Scholar 

  • Walker G (1970) The cytology, histochemistry, and ultrastructure of the cell types found in the digestive gland of the slug, Agriolimax reticulatus (Müller). Protoplasma 71:91–109

    Article  Google Scholar 

  • Whitall D, Ramos A, Wehner D, Fulton M, Mason A, Wirth E, West B, Pait A, Pisarski E, Shaddrix B, Reed LA (2016) Contaminants in queen conch (Strombus gigas) in Vieques, Puerto Rico. Reg Stud Mar Sci 5:80–86

    Article  Google Scholar 

  • Wigham GD (1976) Feeding and digestion in the marine prosobranch Rissoa parva (da Costa). J Molluscan Stud 42:74–94

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from ECOS-NORD 2008–2013 (MO9A2). We thank Manuel Sanchez and Marcela del Río from the CINVESTAV Mérida for their support in conducting the experiments. We also thank Carine Churlaud from the Plateforme Analyses Elémentaires of the LIENSs laboratory for carrying out ICP analyses. The IUF (Institut Universitaire de France) is acknowledged for its support to PB as a Senior Member. Electron microscopy work was performed at the C3MAG laboratory in Guadeloupe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Volland.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volland, JM., Bustamante, P., Aldana Aranda, D. et al. The potential role of spherocrystals in the detoxification of essential trace metals following exposure to Cu and Zn in the fighting conch Strombus (Lobatus) pugilis. Biometals 31, 627–637 (2018). https://doi.org/10.1007/s10534-018-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-018-0114-6

Keywords

Navigation