Skip to main content
Log in

Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Little is known about how tolerant plants cope with internalized aluminium (Al). Tolerant plants are known to deploy efficient detoxification mechanisms, however it is not known to what extent the primary and secondary metabolism is affected by Al. The aim of this work was to study the metabolic repercussions of Al stress in the tolerant plant Plantago almogravensis. P. almogravensis is well adapted to acid soils where high concentrations of free Al are found and has been classified as a hyperaccumulator. In vitro reared plantlets were used for this purpose in order to control Al exposure rigorously. The metabolome of P. almogravensis plantlets as well as its metabolic response to the supply of sucrose was characterized. The supply of sucrose leads to an accumulation of amino acids and secondary metabolites and consumption of carbohydrates that result from increased metabolic activity. In Al-treated plantlets the synthesis of amino acids and secondary metabolites is transiently impaired, suggesting that P. almogravensis is able to recover from the Al treatment within the duration of the trials. In the presence of Al the consumption of carbohydrate resources is accelerated. The content of some metabolic stress markers also demonstrates that P. almogravensis is highly adapted to Al stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arbona V, Manzi M, de Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Badr A, Angers P, Desjardins Y (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell, Tissue Organ Cult 107:13–24

    Article  CAS  Google Scholar 

  • Biais B, Allwood JW, Deborde C, Xu Y, Maucourt M, Beauvoit B, Dunn WB, Jacob D, Goodacre R, Rolin D, Moing A (2009) 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon. Anal Chem 81:2884–2894

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  CAS  PubMed  Google Scholar 

  • Carroll AD, Fox GG, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of gamma-aminobutyric-acid in pH homeostasis in carrot cell-suspensions. Plant Physiol 106:513–520

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deborde C, Maucourt M, Baldet P, Bernillon S, Biais B, Talon G, Ferrand C, Jacob D, Ferry-Dumazet H, de Daruvar A, Rolin D, Moing A (2009) Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit. Metabolomics 5:183–198

    Article  CAS  Google Scholar 

  • Fan WMT (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219

    Article  CAS  Google Scholar 

  • Ferry-Dumazet H, Gil L, Deborde C, Moing A, Bernillon S, Rolin D, Nikolski M, de Daruvar A, Jacob D (2011) MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles. BMC Plant Biol 11:104–116

    Article  PubMed Central  PubMed  Google Scholar 

  • Goncalves S, Martins N, Romano A (2009) Micropropagation and conservation of endangered species Plantago algarbiensis and P. almogravensis. Biol Plant 53:774–778

    Article  Google Scholar 

  • Grevenstuk T, Romano A (2013) Aluminium speciation and internal detoxification mechanisms in plants: where do we stand? Metallomics 5:1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Grevenstuk T, Flis P, Ouerdane L, Lobinski R, Romano A (2013) Identification of the tri-Al tricitrate complex in Plantago almogravensis by hydrophilic interaction LC with parallel ICP-MS and electrospray Orbitrap MS/MS detection. Metallomics 5:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Klug B, Specht A, Horst WJ (2011) Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench). J Exp Bot 62:5453–5462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry R, Halford NG (2007) Asparagine in plants. Annal Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360

    Article  CAS  PubMed  Google Scholar 

  • Martins N, Goncalves S, Andrade PB, Valentao P, Romano A (2013a) Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress. Plant Sci 198:1–6

    Article  CAS  PubMed  Google Scholar 

  • Martins N, Osorio ML, Goncalves S, Osorio J, Palma T, Romano A (2013b) Physiological responses of Plantago algarbiensis and P. almogravensis shoots and plantlets to low pH and aluminum stress. Acta Physiol Plant 35:615–625

    Article  CAS  Google Scholar 

  • Martins N, Osorio ML, Goncalves S, Osorio J, Romano A (2013c) Differences in Al tolerance between Plantago algarbiensis and P. almogravensis reflect their ability to respond to oxidative stress. Biometals 26:427–437

    Article  CAS  PubMed  Google Scholar 

  • Moing A, Maucourt M, Renaud C, Gaudillere M, Brouquisse R, Lebouteiller B, Gousset-Dupont A, Vidal J, Granot D, Denoyes-Rothan B, Lerceteau-Kohler E, Rolin D (2004) Quantitative metabolic profiling by 1-dimensional 1H-NMR analyses: application to plant genetics and functional genomics. Funct Plant Biol 31:889–902

    Article  CAS  Google Scholar 

  • Mounet F, Lemaire-Chamley M, Maucourt M, Cabasson C, Giraudel JL, Deborde C, Lessire R, Gallusci P, Bertrand A, Gaudillere M, Rothan C, Rolin D, Moing A (2007) Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA. Metabolomics 3:273–288

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Navascues J, Perez-Rontome C, Sanchez DH, Staudinger C, Wienkoop S, Rellan-Alvarez R, Becana M (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytol 193:625–636

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Rolin D, Deborde C, Maucourt M, Cabasson C, Fauvelle F, Jacob D, Canlet C, Moing A (2013) High-Resolution 1H-NMR spectroscopy and beyond to explore plant metabolome. In: Gadal P, Jacquot JP (eds) Metabolomics coming of age with its technological diversity., Advances in Botanical research 67Academic Press-Elsevier, London, pp 1–66

    Chapter  Google Scholar 

  • Ronsted N, Gobel E, Franzyk H, Jensen SR, Olsen CE (2000) Chemotaxonomy of Plantago. Iridoid glucosides and caffeoyl phenylethanoid glycosides. Phytochemistry 55:337–348

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    Article  CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Saimaru H, Orihara Y (2010) Biosynthesis of acteoside in cultured cells of Olea europaea. J Nat Med 64:139–145

    Article  CAS  PubMed  Google Scholar 

  • Serrano HC, Pinto MJ, Martins-Loucao MA, Branquinho C (2011) How does an Al-hyperaccumulator plant respond to a natural field gradient of soil phytoavailable Al? Sci Total Environ 409:3749–3756

    Article  CAS  PubMed  Google Scholar 

  • Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330:207–214

    Article  CAS  Google Scholar 

  • Widodo Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xing SG, Jun YB, Hau ZW, Liang LY (2007) Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diarnine oxidases in Glycine max (L.) Merr. roots. Plant Physiol Biochem 45:560–566

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Zhang J, Hou XL, Wang F, Xiong AS (2014) Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Crit Rev Plant Sci 33:225–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Portuguese Foundation for Science and Technology (FCT, Project PTDC/AGR-AAM/102664/2008 and the post-doc grant assigned to T. Grevenstuk SFRH/BPD/73293/2010) and thank Daniel Jacob for administrating MeRy-B repository and BioStatFlow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela Romano.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grevenstuk, T., Moing, A., Maucourt, M. et al. Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently. Biometals 28, 997–1007 (2015). https://doi.org/10.1007/s10534-015-9884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9884-2

Keywords

Navigation