Skip to main content

Advertisement

Log in

Abnormal metal levels in the primary visual pathway of the DBA/2J mouse model of glaucoma

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine metal ion levels in central visual system structures of the DBA/2J mouse model of glaucoma. We used inductively coupled plasma mass spectrometry (ICP-MS) to measure levels of iron (Fe), copper (Cu), zinc (Zn), magnesium (Mg), manganese (Mn), and calcium (Ca) in the retina and retinal projection of 5-month (pre-glaucomatous) and 10-month (glaucomatous) old DBA/2J mice and age-matched C57BL/6J controls. We used microbeam X-ray fluorescence (μ-XRF) spectrometry to determine the spatial distribution of Fe, Zn, and Cu in the superior colliculus (SC), which is the major retinal target in rodents and one of the earliest sites of pathology in the DBA/2J mouse. Our ICP-MS experiments showed that glaucomatous DBA/2J had lower retinal Fe concentrations than pre-glaucomatous DBA/2J and age-matched C57BL/6J mice. Pre-glaucomatous DBA/2J retina had greater Mg, Ca, and Zn concentrations than glaucomatous DBA/2J and greater Mg and Ca than age-matched controls. Retinal Mn levels were significantly deficient in glaucomatous DBA/2J mice compared to aged-matched C57BL/6J and pre-glaucomatous DBA/2J mice. Regardless of age, the SC of C57BL/6J mice contained greater Fe, Mg, Mn, and Zn concentrations than the SC of DBA/2J mice. Greater Fe concentrations were measured by μ-XRF in both the superficial and deep SC of C57BL/6J mice than in DBA/2J mice. For the first time, we show direct measurement of metal concentrations in central visual system structures affected in glaucoma and present evidence for strain-related differences in metal content that may be specific to glaucomatous pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akyol N, Değer O, Keha EE, Kiliç S (1990) Aqueous humour and serum zinc and copper concentrations of patients with glaucoma and cataract. Br J Ophthalmol 74(11):661–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aydin B, Onol M, Hondur A, Kaya MG, Ozdemir H, Cengel A, Hasanreisoglu B (2010) The effect of oral_magnesiumtherapy on visual field and ocular blood flow in normotensiveglaucoma. Eur J Ophthalmol 20(1):131–135

    PubMed  Google Scholar 

  • Bisaglia M, Tessari I, Mammi S, Bubacco L (2009) Interaction between alpha-synuclein and metal ions, still looking for a role in the pathogenesis of Parkinson’s disease. Neuromolecular Med 11(4):239–251

    Article  CAS  PubMed  Google Scholar 

  • Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, Vetter ML, Marsh-Armstrong N, Horner PJ (2008) Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 28(11):2735–2744

    Article  CAS  PubMed  Google Scholar 

  • Corona C, Pensalfini A, Frazzini V, Sensi SL (2011) New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc. Cell Death Dis 2:e176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crish SD, Calkins DJ (2011) Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 176:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ (2010) Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A. 107(11):5196–5201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danesh-Meyer HV (2011) Neuroprotection inglaucoma: recent and future directions. Curr Opin Ophthalmol 22(2):78–86

    Article  PubMed  Google Scholar 

  • DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41(2):608–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dexter DT, Jenner P, Schapira AH, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Royal Kings Queens Parkinson’s Dis Res Group. Ann Neurol 32(Suppl):S94–S100

    CAS  Google Scholar 

  • Farkas RH, Chowers I, Hackam AS, Kageyama M, Nickells RW, Otteson DC, Duh EJ, Wang C, Valenta DF, Gunatilaka TL, Pease ME, Quigley HA, Zack DJ (2004) Increased expression of iron-regulating genes in monkey and human glaucoma. Invest Ophthalmol Vis Sci 45(5):1410–1417

    Article  PubMed  Google Scholar 

  • Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  CAS  PubMed  Google Scholar 

  • Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146(8):1041–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iqbal Z, Muhammad Z, Shah MT, Bashir S, Khan T, Khan MD (2002) Relationship between the concentration of copper and iron in the aqueous humour and intraocular pressure in rabbits treated with topical steroids. Clin Exp Ophthalmol 30(1):28–35

    Article  Google Scholar 

  • Jakobs TC, Libby RT, Ben Y, John SW, Masland RH (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kepp KP (2012) Bioinorganic chemistry of Alzheimer’s disease. Chem Rev 112(10):5193–5239

    Article  CAS  PubMed  Google Scholar 

  • Leskovjan AC, Lanzirotti A, Miller LM (2009) Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer’s Disease. NeuroImage 47:1215–1220

    Article  PubMed Central  PubMed  Google Scholar 

  • Leskovjan AC, Kretlow A, Lanzirotti A, Barrea R, Vogt S, Miller LM (2011) Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease. NeuroImage 55:32–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKinnon SJ (2003) Glaucoma: ocular Alzheimer’s disease? Front Biosci 8:s1140–s1156

    Article  CAS  PubMed  Google Scholar 

  • McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ (2008) Current management of glaucoma and the need for complete therapy. Am J Manag Care 14(1 Suppl):S20–S27

    PubMed  Google Scholar 

  • Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn Co-localized with β-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37

    Article  CAS  PubMed  Google Scholar 

  • Miyahara T, Kikuchi T, Akimoto M, Kurokawa T, Shibuki H, Yoshimura N (2003) Gene microarray analysis of experimental glaucomatous retina from cynomologous monkey. Invest Ophthalmol Vis Sci 44(10):4347–4356

    Article  PubMed  Google Scholar 

  • Osborne NN (2009) Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol 87(4):450–454

    Article  PubMed  Google Scholar 

  • Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158(1):126–136

    Article  CAS  PubMed  Google Scholar 

  • Pithadia AS, Lim MH (2012) Metal-associated amyloid-β species in Alzheimer’s disease. Curr Opin Chem Biol 16(1–2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savelieff MG, Lee S, Liu Y, Lim MH (2013) Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem Biol 8(5):856–865

    Article  CAS  PubMed  Google Scholar 

  • Sigel A, Sigel H, Sigel RKO (2006). Neurodegenerative diseases and metal ions: Metal ions in the life sciences. West Sussex, England.; Vol 1

  • Soto I, Oglesby E, Buckingham BP, Son JL, Roberson ED, Steele MR, Inman DM, Vetter ML, Horner PJ, Marsh-Armstrong N (2008) Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci 28(2):548–561

    Article  CAS  PubMed  Google Scholar 

  • Sourkes TL (1972) Influence of specific nutrients on catecholamine synthesis and metabolism. Pharmacol Rev 24(2):349–359

    CAS  PubMed  Google Scholar 

  • Stasi K, Nagel D, Yang X, Ren L, Mittag T, Danias J (2007) Ceruloplasmin upregulation in retina of murine and human glaucomatous eyes. Invest Ophthalmol Vis Sci 48(2):727–732

    Article  PubMed  Google Scholar 

  • Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML (2006) Microarray analysis of retinal gene expression in the DBA/2J model ofglaucoma. Invest Ophthalmol Vis Sci 47(3):977–985

    Article  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Südhof TC (2012). Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4(1)

  • Tamano H, Takeda A (2011) Dynamic action of neurometals at the synapse. Metallomics 3(7):656–661

    Article  CAS  PubMed  Google Scholar 

  • Valverde F (1973). The neuropil in superficial layers of the superior colliculus of the mouse. Z. Anat. Entwickl.- Gesch. 142, 117—147

  • Yuan R, Korstanje R (2014). Aging study: blood chemistry for 32 inbred strains of mice. MPD:Yuan3. Mouse Phenome Database web site. The Jackson Laboratory, Bar Harbor, Maine USA. http://phenome.jax.org

Download references

Acknowledgments

The acknowledgment can be added as follows “The authors would like to acknowledge Dr. Raul Barrea of Sector 18 (BIOCAT beamline) beamline support, Andrew Crawford for help with MatLab programming, and Kevin O’Neill for help with processing XRF images. The authors also thank Dr. Ted Huston for assistance with the ICP-MS samples. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. This project was supported by Grants (9 P41 GM103622-18) from the National Institute of General Medical Sciences of the National Institutes of Health.

Funding

This work was supported by the following funding sources: The Ruth K. Broad Biomedical Foundation and the 2013 Research Fund (Project Number 1.130068.01) of UNIST (Ulsan National Institute of Science and Technology) (to M.H.L.). EY022358 from the National Eye Institute (to S.D.C.) NSF Graduate Research Fellowship (to A.S.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mi Hee Lim or Samuel D. Crish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeToma, A.S., Dengler-Crish, C.M., Deb, A. et al. Abnormal metal levels in the primary visual pathway of the DBA/2J mouse model of glaucoma. Biometals 27, 1291–1301 (2014). https://doi.org/10.1007/s10534-014-9790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9790-z

Keywords

Navigation