Skip to main content

Advertisement

Log in

Transition metal abnormalities in progressive dementias

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Abnormal distributions of transition metals inside the brain are potential diagnostic markers for several central nervous system diseases, including Alzheimer’s disease (AD), Parkinson’s disease, dementia with Lewy bodies (DLB), bipolar disorders and depression. To further explore this possibility, the total concentrations of iron, zinc, copper, manganese, aluminum, chromium and cadmium were measured in post-mortem hippocampus and amygdala tissues taken from AD, DLB and Control patients. A statistically significant near fifty percent reduction in the total copper levels of AD patients was observed in both the hippocampus and amygdala. The statistical power of the hippocampus and amygdala copper analysis was found to be 86 and 74% respectively. No statistically significant deviations in the total metal concentrations were found for zinc, manganese, chromium or aluminum. Iron was found to be increased by 38% in AD amygdala tissues, but was unchanged in AD hippocampus tissues. Accounting for differences in tissue water content, as a function of both tissue type and disease state, revealed more consistencies with previous literature. To aid in the design of future experiments, the effect sizes for all tissue types and metals studied are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aamodt AH, Stovner LJ, Thorstensen K, Lydersen S, White LR, Aasly JO (2007) Prevalence of haemochromatosis gene mutations in Parkinson’s disease. J Neurol Neurosurg Psychiatry 78:315–317

    Article  PubMed  Google Scholar 

  • Akatsu H, Takahashi M, Matsukawa N et al (2002) Subtype analysis of neuropathologically diagnosed patients in a Japanese geriatric hospital. J Neurol Sci 196:60–63

    Article  Google Scholar 

  • Andrási E, Farkas É, Scheibler H, Réffy A, Bezúr L (1995) Al, Zn, Cu, Mn and Fe levels in brain in Alheimer’s disease. Arch Gerontol Geriatr 21:89–97

    Article  PubMed  Google Scholar 

  • Barthel H, Hermann W, Kluge R, Hesse S, Collingridge DR, Wagner A, Sabri O (2003) Concordant pre- and postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease. Am J Neuroradiol 24:234–238

    PubMed  Google Scholar 

  • Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M, Huang D, Edwards N, Mintz J (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28:414–423

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Lu PH, Tishler TA et al (2010) Prevalent iron metabolism gene variants associated with increased brain ferritin iron in healthy older men. J Alzheimers Dis 20:333–341

    PubMed  CAS  Google Scholar 

  • Becker JS, Zorly MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77:3208–3216

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Hoggenmuller U, Hofmann E, Fischer R, Kraus M, Scheurlen M, Becker G (2000) The basal ganglia in haemochromatosis. Neuroradiology 42:9–13

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ (2010a) Copper toxicity in the general population. Clin Neurophysiol 121:459–460

    Article  PubMed  Google Scholar 

  • Brewer GJ (2010b) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23:319–326

    Article  PubMed  CAS  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114

    Article  PubMed  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Psychology Press, New York

    Google Scholar 

  • Corrigan FM, Reynolds GP, Ward NI (1993) Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6:149–154

    Article  PubMed  CAS  Google Scholar 

  • Crouch PJ, Huang LW, Adlard PA et al (2009) Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. PNAS 106:381–386

    Article  PubMed  CAS  Google Scholar 

  • Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  • Dexter DT, Sain J, Rose S et al (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35:38–44

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C (2007) A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer’s disease. Biochem Soc Trans 35:571–573

    Article  PubMed  CAS  Google Scholar 

  • Grunberg-Etkovitz N, Lev N, Ickowicz D, Avital A, Offen D, Malik Z (2009) Accelerated proteasomal activity inducted by Pb(+2), Ga(+3), or Cu(+2) exposure does not induce degradation of alpha-synuclein. J Environ Pathol Toxicol Oncol 28:5–24

    PubMed  CAS  Google Scholar 

  • Heit M, Klusek CS (1982) The effects of dissecting tools on the trace element concentrations of fish and mussel tissues. Sci Total Environ 24:129–134

    Article  PubMed  CAS  Google Scholar 

  • Kitzberger R, Madl C, Ferenci P (2005) Wilson disease. Metab Brain Dis 20:295–302

    Article  PubMed  Google Scholar 

  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  PubMed  CAS  Google Scholar 

  • Moody JR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267

    Article  CAS  Google Scholar 

  • Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409

    Article  PubMed  CAS  Google Scholar 

  • Mustak MS, Rao TSS, Shanmugavelu P, Sundar NMS, Menon RB, Rao RV, Rao KSJ (2008) Assessment of serum macro and trace element homeostasis and the complexity of inter-element relations in bipolar mood disorders. Clinica Chimica Acta 394:47–53

    Article  CAS  Google Scholar 

  • Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195:1–10

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Olea-Azar C, Segura-Aguilar J (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in rat substantia nigra neuronal cell line. J Neurochem 77:519–529

    Article  PubMed  CAS  Google Scholar 

  • Perry R, McKeith I, Perry E (1997) Lewy body dementia-clinical, pathological and neurochemical interconnections. J Neural Transm 51:95–109

    CAS  Google Scholar 

  • Plantin L-O, Lying-Tunell U, Kristensson K (1987) Trace elements in the human central nervous system studied with neuron activation analysis. Biol Trace Elem Res 13:69–75

    Article  CAS  Google Scholar 

  • Roelandts I, Gladney ES (1998) Consensus values for NIST biological and environmental standard reference materials. Fresenius J Anal Chem 360:327–338

    Article  CAS  Google Scholar 

  • Rulon LL, Robertson JD, Lovell MA, Deibel MA, Ehmann WD, Markesbery WR (2000) Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res 75:79–85

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. PNAS 94:9866–9868

    Article  PubMed  CAS  Google Scholar 

  • Squitti R, Pasqualetti P, Forno GD et al (2005) Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology 64:1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Squitti R, Barbati G, Rossi L et al (2006) Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF beta-amyloid, and h-tau. Neurology 67:76–82

    Article  PubMed  CAS  Google Scholar 

  • Squitti R, Bressi F, Pasqualetti P et al (2009) Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease. Neurology 72:50–55

    Article  PubMed  CAS  Google Scholar 

  • Strozyk D, Launer LJ, Adlard PA et al (2007) Zinc and copper module Alzheimer ABeta levels in human cerebrospinal fluid. Neurobiol Aging 30:1069–1077

    Article  PubMed  Google Scholar 

  • Ward NI, Mason JA (1987) Neutron activation analysis techniques for identifying elemental status in Alzheimer’s disease. J Radioanal Nucl Chem 113:515–526

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely thank both the patients and their families for their generous donations, without which this research would not be possible. The authors would like to acknowledge the researchers at Elemental Analysis Inc. (Kentucky, USA) for their invaluable assistance with the inductively coupled mass spectrometry experiments. The authors would also like to acknowledge financial support from the New Energy and Industrial Technology Development Organization (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Yezdimer.

Additional information

E. M. Yezdimer—formerly at Industrial Summit Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akatsu, H., Hori, A., Yamamoto, T. et al. Transition metal abnormalities in progressive dementias. Biometals 25, 337–350 (2012). https://doi.org/10.1007/s10534-011-9504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9504-8

Keywords

Navigation