Skip to main content

Advertisement

Log in

Bovine milk lactoferrin induces synthesis of the angiogenic factors VEGF and FGF2 in osteoblasts via the p44/p42 MAP kinase pathway

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Lactoferrin (LF) belongs to the transferrin family and is present in several physiological fluids, including milk and colostrum. LF has recently been identified as an anabolic factor for bone. Here we investigated whether bovine LF (bLF) induces synthesis of angiogenic factors by osteoblasts. If so, we examined the underlying mechanism. We found that bLF purified from milk increased the mRNA expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF2) in murine osteoblast-like MC3T3-E1 cells and primary murine osteoblasts in a time- and dose-dependent manner. Furthermore, bLF increased VEGF and FGF2 protein levels in MC3T3-E1 cells. In addition, treatment of MC3T3-E1 cells with bLF rapidly induced phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase. The bLF-mediated increases in VEGF and FGF2 mRNA and protein were inhibited by U0126, a specific inhibitor of the upstream kinase that activates p44/p42 MAP kinase (MEK). Taken together, our results strongly suggest that bLF induces VEGF and FGF2 synthesis in a p44/p42 MAP kinase-dependent manner in MC3T3-E1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LF:

Lactoferrin

bLF:

Bovine LF

VEGF:

Vascular endothelial growth factor

FGF:

Fibroblast growth factor

MAP:

Mitogen-activated protein

FCS:

Fetal calf serum

hLF:

Human LF

References

  • Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol 209:711–734

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM (1995) Synergistic effect of vascular endothelial growth-factor and basic fibroblast growth-factor on angiogenesis in vivo. Circulation 92:365–371

    CAS  Google Scholar 

  • Berra E, Pages G, Pouyssegur J (2000) MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19:139–145

    Article  PubMed  CAS  Google Scholar 

  • Blais A, Malet A, Mikogami T, Martin-Rouas C, Tome D (2009) Oral bovine lactoferrin improves bone status of ovariectomized mice. Am J Physiol Endocrinol Metab 296:E1281–E1288

    Article  PubMed  CAS  Google Scholar 

  • Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, Jirillo E (2002) Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 8:403–417

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  PubMed  CAS  Google Scholar 

  • Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM (1998) Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Invest Ophthalmol Vis Sci 39:581–591

    PubMed  CAS  Google Scholar 

  • Chua CC, Hamdy RC, Chua BH (2000) Mechanism of transforming growth factor-beta1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochim Biophys Acta 1497:69–76

    Article  PubMed  CAS  Google Scholar 

  • Cornish J, Callon KE, Naot D, Palmano KP, Banovic T, Bava U, Watson M, Lin JM, Tong PC, Chen Q, Chan VA, Reid HE, Fazzalari N, Baker HM, Baker EN, Haggarty NW, Grey AB, Reid IR (2004) Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 145:4366–4374

    Article  PubMed  CAS  Google Scholar 

  • Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80:371–378

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  PubMed  CAS  Google Scholar 

  • Fiorelli G, Orlando C, Benvenuti S, Franceschelli F, Bianchi S, Pioli P, Tanini A, Serio M, Bartucci F, Brandi ML (1994) Characterization, regulation, and function of specific cell-membrane receptors for insulin-like growth-factor-I on bone endothelial-cells. J Bone Miner Res 9:329–337

    Article  PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  • Friesel R, Maciag T (1999) Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb Haemost 82:748–754

    PubMed  CAS  Google Scholar 

  • Füreder W, Krauth MT, Sperr WR, Sonneck K, Simonitsch-Klupp I, Müllauer L, Willmann M, Horny HP, Valent P (2006) Evaluation of angiogenesis and vascular endothelial growth factor expression in the bone marrow of patients with aplastic anemia. Am J Pathol 168:123–130

    Article  PubMed  Google Scholar 

  • Globus RK, Plouet J, Gospodarowicz D (1989) Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix. Endocrinology 124:1539–1547

    Article  PubMed  CAS  Google Scholar 

  • Goretzki L, Mueller BM (1998) Low-density-lipoprotein-receptor-related protein (LRP) interacts with a GTP-binding protein. Biochem J 336:381–386

    PubMed  CAS  Google Scholar 

  • Goto F, Goto K, Weindel K, Folkman J (1993) Synergistic effects of vascular endothelial growth-factor and basic fibroblast growth-factor on the proliferation and cord formation of bovine capillary endothelial-cells within collagen gels. Lab Invest 69:508–517

    PubMed  CAS  Google Scholar 

  • Grey A, Banovic T, Zhu Q, Watson M, Callon K, Palmano K, Ross J, Naot D, Reid IR, Cornish J (2004) The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol 18:2268–2278

    Article  PubMed  CAS  Google Scholar 

  • Grey A, Zhu Q, Watson M, Callon K, Cornish J (2006) Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Mol Cell Endocrinol 251:96–102

    Article  PubMed  CAS  Google Scholar 

  • Guenther HL, Fleisch H, Sorgente N (1986) Endothelial-cells in culture synthesize a potent bone cell active mitogen. Endocrinology 119:193–201

    Article  PubMed  CAS  Google Scholar 

  • Guo HY, Jiang L, Ibrahim SA, Zhang L, Zhang H, Zhang M, Ren FZ (2009) Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. J Nutr 139:958–964

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Motsuchi W, Tanaka S, Dosako S (1994) Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn J Med Sci Biol 47:73–85

    PubMed  CAS  Google Scholar 

  • Hurley MM, Abreu C, Gronowicz G, Kawaguchi H, Lorenzo J (1994) Expression and regulation of basic fibroblast growth-factor messenger-RNA levels in mouse osteoblastic MC3T3-E1 cells. J Biol Chem 269:9392–9396

    PubMed  CAS  Google Scholar 

  • Hurley MM, Tetradis S, Huang YF, Hock J, Kream BE, Raisz LG, Sabbieti MG (1999) Parathyroid hormone regulates the expression of fibroblast growth factor-2 mRNA and fibroblast growth factor receptor mRNA in osteoblastic cells. J Bone Miner Res 14:776–783

    Article  PubMed  CAS  Google Scholar 

  • Ji ZS, Mahley RW (1994) Lactoferrin binding to heparin sulfate proteoglycans and the LDL receptor-related protein. Further evidence supporting the importance of direct binding of remnant lipoproteins to HSPG. Arterioscler Thromb 14:2025–2031

    Article  PubMed  CAS  Google Scholar 

  • Kim CW, Son KN, Choi SY, Kim JY (2006) Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration. FEBS Lett 580:4332–4336

    Article  PubMed  CAS  Google Scholar 

  • Li XH, Zhou X, Zeng S, Ye F, Yun JL, Huang TG, Li H, Li YM (2008) Effects of intramyocardial injection of platelet-rich plasma on the healing process after myocardial infarction. Coron Artery Dis 19:363–370

    Article  PubMed  Google Scholar 

  • Lorget F, Clough J, Oliveira M, Daury MC, Sabokbar A, Offord E (2002) Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochem Biophys Res Commun 296:261–266

    Article  PubMed  CAS  Google Scholar 

  • Neels JG, van Den Berg BM, Lookene A, Olivecrona G, Pannekoek H, van Zonneveld AJ (1999) The second and fourth cluster of class a cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties. J Biol Chem 274:31305–31311

    Article  PubMed  CAS  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    PubMed  CAS  Google Scholar 

  • Nijweide PJ, Burger EH, Feyen JHM (1986) Cells of bone—proliferation, differentiation, and hormonal-regulation. Physiol Rev 66:855–886

    PubMed  CAS  Google Scholar 

  • Norrby K (2004) Human apo-lactoferrin enhances angiogenesis mediated by vascular endothelial growth factor A in vivo. J Vasc Res 41:293–304

    Article  PubMed  CAS  Google Scholar 

  • Norrby K, Mattsby-Baltzer I, Innocenti M, Tuneberg S (2001) Orally administered bovine lactoferrin systemically inhibits VEGF(165)-mediated angiogenesis in the rat. Int J Cancer 91:236240

    Article  Google Scholar 

  • Paesano R, Berlutti F, Pietropaoli M, Pantanella F, Pacifici E, Goolsbee W, Valenti P (2010) Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women. Biometals 23:411–417

    Article  PubMed  CAS  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth-factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831

    Article  PubMed  CAS  Google Scholar 

  • Pierce A, Colavizza D, Benaissa M, Maes P, Tartar A, Montreuil J, Spik G (1991) Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem 196:177–184

    Article  PubMed  CAS  Google Scholar 

  • Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  PubMed  CAS  Google Scholar 

  • Shima DT, Deutsch U, D’Amore PA (1995) Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett 370:203–208

    Article  PubMed  CAS  Google Scholar 

  • Shimamura M, Yamamoto Y, Ashino H, Oikawa T, Hazato T, Tsuda H, Iigo M (2004) Bovine lactoferrin inhibits tumor-induced angiogenesis. Int J Cancer 111:111–116

    Article  PubMed  CAS  Google Scholar 

  • Steijns JM, van Hooijdonk ACM (2000) Occurrence structure, biochemical properties and technological characteristics of lactoferrin. Br J Nutr 84:S11–S17

    Article  PubMed  CAS  Google Scholar 

  • Street J, Lenehan B (2009) Vascular endothelial growth factor regulates osteoblast survival—evidence for an autocrine feedback mechanism. J Orthop Surg Res 4:19

    Article  PubMed  Google Scholar 

  • Suda T, Jimi E, Nakamura I, Takahashi N (1997) Role of 1 alpha, 25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol 282:223–235

    Article  PubMed  CAS  Google Scholar 

  • Takayama Y, Mizumachi K (2008) Effect of bovine lactoferrin on extracellular matrix calcification by human osteoblast-like cells. Biosci Biotechnol Biochem 72:226–230

    Article  PubMed  CAS  Google Scholar 

  • Takayama Y, Mizumachi K (2009) Effect of lactoferrin-embedded collagen membrane on osteogenic differentiation of human osteoblast-like cells. J Biosci Bioeng 107:191–195

    Article  PubMed  CAS  Google Scholar 

  • Tsuda H, Sekine K, Fujita K, Iigo M (2002) Cancer prevention by bovine lactoferrin and underlying mechanisms—a review of experimental and clinical studies. Biochem Cell Biol 80:131–136

    Article  PubMed  CAS  Google Scholar 

  • Vash B, Phung N, Zein S, DeCamp D (1998) Three complement-type repeats of the low-density lipoprotein receptor-related protein define a common binding site for RAP, PAI-1, and lactoferrin. Blood 92:3277–3285

    PubMed  CAS  Google Scholar 

  • Villanueva JE, Nimni ME (1990) Promotion of calvarial cell osteogenesis by endothelial-cells. J Bone Miner Res 5:733–739

    Article  PubMed  CAS  Google Scholar 

  • Villars F, Bordenave L, Bareille R, Amedee J (2000) Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem 79:672–685

    Article  PubMed  CAS  Google Scholar 

  • Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J (1992) Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem 267:26172–26180

    PubMed  CAS  Google Scholar 

  • Yamauchi K, Wakabayashi H, Shin K, Takase M (2006) Bovine Lactoferrin: benefits and mechanism of action against infections. Biochem Cell Biol 84:291–296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei-ichi Nakajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, Ki., Kanno, Y., Nakamura, M. et al. Bovine milk lactoferrin induces synthesis of the angiogenic factors VEGF and FGF2 in osteoblasts via the p44/p42 MAP kinase pathway. Biometals 24, 847–856 (2011). https://doi.org/10.1007/s10534-011-9439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9439-0

Keywords

Navigation