Skip to main content
Log in

Intestinal iron absorption during suckling in mammals

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The maintenance of appropriate iron levels is important for mammalian health, particularly during the rapid growth period following birth. Too little iron can lead to irreversible damage to the developing central nervous system and too much iron at this point can have adverse long term consequences, possibly due to excessive free radical production. In order to maintain iron levels, intestinal iron absorption is very efficient in young mammals, such that almost all of the iron in breast milk is utilized. However this high level of absorption is unable to be down regulated in response to excess iron as it can be in adults, implying that different regulatory processes are involved during suckling. Various mechanisms have been proposed to explain this high absorption, including enhanced expression of the proteins involved in iron absorption in adults (particularly DMT1 and ferroportin), non-specific uptake via pinocytosis, and the uptake of lactoferrin bound iron by the lactoferrin receptor. However, at present the precise mechanism is unclear. It is possible that all of these components contribute to the high intestinal iron absorption seen during suckling, or a novel, as yet undescribed, mechanism could be involved. This review summarises the evidence for and against each of the mechanisms described above and highlights how little is known about iron homeostasis in this vital stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275(26):19906–19912. doi:10.1074/jbc.M000713200

    Article  PubMed  CAS  Google Scholar 

  • Anderson GJ, Walsh MD, Powell LW, Halliday JW (1991) Intestinal transferrin receptors and iron absorption in the neonatal rat. Br J Haematol 77(2):229–236

    Article  PubMed  CAS  Google Scholar 

  • Anderson GJ, Frazer DM, McLaren GD (2009) Iron absorption and metabolism. Curr Opin Gastroenterol 25(2):129–135. doi:10.1097/MOG.0b013e32831ef1f7

    Article  PubMed  CAS  Google Scholar 

  • Ashraf AP, Eason NB, Kabagambe EK, Haritha J, Meleth S, McCormick KL (2010) Dietary iron intake in the first 4 months of infancy and the development of type 1 diabetes: a pilot study. Diabetol Metab Syndr 2:58. doi:10.1186/1758-5996-2-58

    Article  PubMed  Google Scholar 

  • Clark SL Jr (1959) The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice. J Biophys Biochem Cytol 5(1):41–50

    Article  PubMed  Google Scholar 

  • Collard KJ (2009) Iron homeostasis in the neonate. Pediatrics 123(4):1208–1216. doi:10.1542/peds.2008-1047

    Article  PubMed  Google Scholar 

  • Conrad ME Jr, Crosby WH (1963) Intestinal mucosal mechanisms controlling iron absorption. Blood 22:406–415

    PubMed  CAS  Google Scholar 

  • Davidson LA, Lonnerdal B (1987) Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand 76(5):733–740

    Article  PubMed  CAS  Google Scholar 

  • Dewey KG, Chaparro CM (2007) Session 4: mineral metabolism and body composition iron status of breast-fed infants. Proc Nutr Soc 66(3):412–422. doi:10.1017/S002966510700568X

    Article  PubMed  CAS  Google Scholar 

  • Domellof M (2007) Iron requirements, absorption and metabolism in infancy and childhood. Curr Opin Clin Nutr Metab Care 10(3):329–335. doi:10.1097/MCO.0b013e3280523aaf

    Article  PubMed  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771):776–781. doi:10.1038/35001596

    Article  PubMed  CAS  Google Scholar 

  • Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1(3):191–200. doi:10.1016/j.cmet.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. doi:10.1126/science.1110591

    Article  PubMed  Google Scholar 

  • Ellison RT III, Giehl TJ (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Investig 88(4):1080–1091. doi:10.1172/JCI115407

    Article  PubMed  CAS  Google Scholar 

  • Ezekiel E (1967) Intestinal iron absorption by neonates and some factors affecting it. J Lab Clin Med 70(1):138–149

    PubMed  CAS  Google Scholar 

  • Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91(441):48–55

    PubMed  CAS  Google Scholar 

  • Fleming MD, Trenor CC III, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16(4):383–386. doi:10.1038/ng0897-383

    PubMed  CAS  Google Scholar 

  • Frazer DM, Anderson GJ (2005) Iron imports. I. Intestinal iron absorption and its regulation. Am J Physiol Gastrointest Liver Physiol 289(4):G631–G635. doi:10.1152/ajpgi.00220.2005

    PubMed  CAS  Google Scholar 

  • Frazer DM, Wilkins SJ, Becker EM, Murphy TL, Vulpe CD, McKie AT, Anderson GJ (2003) A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut 52(3):340–346

    Article  PubMed  CAS  Google Scholar 

  • Frazer DM, Wilkins SJ, Anderson GJ (2007) Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract. Am J Physiol Gastrointest Liver Physiol 293(3):G525–G531. doi:10.1152/ajpgi.00579.2006

    Article  PubMed  CAS  Google Scholar 

  • Gallagher ND, Mason R, Foley KE (1973) Mechanisms of iron absorption and transport in neonatal rat intestine. Gastroenterology 64(3):438–444

    PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488. doi:10.1038/41343

    Article  PubMed  CAS  Google Scholar 

  • Herbst JJ, Sunshine P (1969) Postnatal development of the small intestine of the rat. Changes in mucosal morphology at weaning. Pediatr Res 3(1):27–33

    Article  PubMed  CAS  Google Scholar 

  • Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA, Andersen JK (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28(6):907–913. doi:10.1016/j.neurobiolaging.2006.04.003

    Article  PubMed  CAS  Google Scholar 

  • Kawakami H, Lonnerdal B (1991) Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes. Am J Physiol 261(5 Pt 1):G841–G846

    PubMed  CAS  Google Scholar 

  • Kim WS, Ohashi M, Tanaka T, Kumura H, Kim GY, Kwon IK, Goh JS, Shimazaki K (2004) Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. Biometals 17(3):279–283

    Article  PubMed  CAS  Google Scholar 

  • Leong WI, Bowlus CL, Tallkvist J, Lonnerdal B (2003a) DMT1 and FPN1 expression during infancy: developmental regulation of iron absorption. Am J Physiol Gastrointest Liver Physiol 285(6):G1153–G1161. doi:10.1152/ajpgi.00107.2003

    PubMed  CAS  Google Scholar 

  • Leong WI, Bowlus CL, Tallkvist J, Lonnerdal B (2003b) Iron supplementation during infancy—effects on expression of iron transporters, iron absorption, and iron utilization in rat pups. Am J Clin Nutr 78(6):1203–1211

    PubMed  CAS  Google Scholar 

  • Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13(3):158–165. doi:10.1016/j.spen.2006.08.004

    Article  PubMed  Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2):299–309

    Article  PubMed  CAS  Google Scholar 

  • McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291(5509):1755–1759. doi:10.1126/science.1057206

    Article  PubMed  CAS  Google Scholar 

  • Nemeth E, Ganz T (2009) The role of hepcidin in iron metabolism. Acta Haematol 122(2–3):78–86. doi:10.1159/000243791

    Article  PubMed  CAS  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093. doi:10.1126/science.1104742

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Hendrixson DR, Baker EN, Murphy TF, St Geme JW III, Plaut AG (1998) Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc Natl Acad Sci USA 95(21):12641–12646

    Article  PubMed  CAS  Google Scholar 

  • Rao R, Georgieff MK (2007) Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med 12(1):54–63. doi:10.1016/j.siny.2006.10.007

    Article  PubMed  Google Scholar 

  • Rios E, Lipschitz DA, Cook JD, Smith NJ (1975) Relationship of maternal and infant iron stores as assessed by determination of plasma ferritin. Pediatrics 55(5):694–699

    PubMed  CAS  Google Scholar 

  • Saarinen UM, Siimes MA (1979) Iron absorption from breast milk, cow’s milk, and iron-supplemented formula: an opportunistic use of changes in total body iron determined by hemoglobin, ferritin, and body weight in 132 infants. Pediatr Res 13(3):143–147

    Article  PubMed  CAS  Google Scholar 

  • Sazawal S, Dhingra U, Hiremath G, Sarkar A, Dhingra P, Dutta A, Menon VP, Black RE (2010) Effects of Bifidobacterium lactis HN019 and prebiotic oligosaccharide added to milk on iron status, anemia, and growth among children 1 to 4 years old. J Pediatr Gastroenterol Nutr 51(3):341–346. doi:10.1097/MPG.0b013e3181d98e45

    PubMed  Google Scholar 

  • Siddappa AM, Rao R, Long JD, Widness JA, Georgieff MK (2007) The assessment of newborn iron stores at birth: a review of the literature and standards for ferritin concentrations. Neonatology 92(2):73–82. doi:10.1159/000100805

    Article  PubMed  CAS  Google Scholar 

  • Srai SK, Debnam ES, Boss M, Epstein O (1988) Age-related changes in the kinetics of iron absorption across the guinea pig proximal intestine in vivo. Biol Neonate 53(1):53–59

    Article  PubMed  CAS  Google Scholar 

  • Suzuki YA, Lonnerdal B (2002) Characterization of mammalian receptors for lactoferrin. Biochem Cell Biol 80(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Thompson K, Molina RM, Donaghey T, Brain JD, Wessling-Resnick M (2007) Iron absorption by Belgrade rat pups during lactation. Am J Physiol Gastrointest Liver Physiol 293(3):G640–G644. doi:10.1152/ajpgi.00153.2007

    Article  PubMed  CAS  Google Scholar 

  • Viatte L, Vaulont S (2009) Hepcidin, the iron watcher. Biochimie 91(10):1223–1228. doi:10.1016/j.biochi.2009.06.012

    Article  PubMed  CAS  Google Scholar 

  • Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21(2):195–199. doi:10.1038/5979

    Article  PubMed  CAS  Google Scholar 

  • Ward PP, Mendoza-Meneses M, Cunningham GA, Conneely OM (2003) Iron status in mice carrying a targeted disruption of lactoferrin. Mol Cell Biol 23(1):178–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

G. J. Anderson is supported by a Senior Research Fellowship from the National Health and Medical Research Council of Australia. This work was supported by a Project Grant from the National Health and Medical Research Council of Australia to G. J. Anderson and D. M. Frazer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frazer, D.M., Darshan, D. & Anderson, G.J. Intestinal iron absorption during suckling in mammals. Biometals 24, 567–574 (2011). https://doi.org/10.1007/s10534-011-9429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9429-2

Keywords

Navigation