Skip to main content
Log in

Bacterial transport of sulfate, molybdate, and related oxyanions

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Sulfur is an essential element for microorganisms and it can be obtained from varied compounds, sulfate being the preferred source. The first step for sulfate assimilation, sulfate uptake, has been studied in several bacterial species. This article reviews the properties of different bacterial (and archaeal) transporters for sulfate, molybdate, and related oxyanions. Sulfate uptake is carried out by sulfate permeases that belong to the SulT (CysPTWA), SulP, CysP/(PiT), and CysZ families. The oxyanions molybdate, tungstate, selenate and chromate are structurally related to sulfate. Molybdate is transported mainly by the high-affinity ModABC system and tungstate by the TupABC and WtpABC systems. CysPTWA, ModABC, TupABC, and WtpABC are homologous ATP-binding cassette (ABC)-type transporters with similar organization and properties. Uptake of selenate and chromate oxyanions occurs mainly through sulfate permeases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285:97–100

    Article  PubMed  CAS  Google Scholar 

  • Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    PubMed  CAS  Google Scholar 

  • Anderson LA, Palmer T, Price NC, Bornemann S, Boxer DH, Pau RN (1997) Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur J Biochem 246:119–126

    Article  PubMed  CAS  Google Scholar 

  • Andreesen JR, Makdessi K (2008) Tungsten, the surprisingly positively acting heavy metal element for prokaryotes. Ann NY Acad Sci 1125:215–219

    Article  PubMed  CAS  Google Scholar 

  • Avoscan L, Carrière M, Proux O, Sarret G, Degrouard J, Covès J, Gouget B (2009) Enhanced selenate accumulation in Cupriavidus metallidurans CH34 does not trigger a detoxification pathway. Appl Environ Microbiol 75:2250–2252

    Article  PubMed  CAS  Google Scholar 

  • Bai L, Collins JF, Ghishan FK (2000) Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am J Physiol Cell Physiol 279:C1135–C1143

    PubMed  CAS  Google Scholar 

  • Balan A, Santacruz CP, Moutran A, Ferreira RC, Medrano FJ, Pérez CA, Ramos CH, Ferreira LC (2006) The molybdate-binding protein (ModA) of the plant pathogen Xanthomonas axonopodis pv citri. Protein Expr Purif 50:215–222

    Article  PubMed  CAS  Google Scholar 

  • Balan A, Santacruz-Pérez C, Moutran A, Ferreira LC, Neshich G, Goncalves Barbosa JA (2008) Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv citri. Biochim Biophys Acta 1784:393–399

    PubMed  CAS  Google Scholar 

  • Bébien M, Kirsch J, Méjean V, Verméglio A (2002) Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology 148:3865–3872

    PubMed  Google Scholar 

  • Bevers LE, Hagedoorn PL, Krijger GC, Hagen WR (2006) Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J Bacteriol 188:6498–6505

    Article  PubMed  CAS  Google Scholar 

  • Bøttger P, Pedersen L (2005) Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. FEBS J 272:3060–3074

    Article  PubMed  CAS  Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190:6996–7003

    Article  PubMed  CAS  Google Scholar 

  • Britton P, Boronat A, Hartley DA, Jones-Mortimer MC, Kornberg HL, Parra F (1983) Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: location of the gsr (tgs) and iex (crr) genes by specialized transduction. J Gen Microbiol 129:349–356

    PubMed  CAS  Google Scholar 

  • Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    Article  PubMed  CAS  Google Scholar 

  • Byrne CR, Monroe RS, Ward KA, Kredich NM (1988) DNA Sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J Bacteriol 170:3150–3157

    PubMed  CAS  Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    PubMed  CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Holtman CK, Magnuson RD, Youderian PA, Golden SS (2008) The complete sequence and functional analysis of pANL, the large plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Plasmid 59:176–192

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Dam P, Olman V, Harris K, Su Z, Xu Y (2007) Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res 35:288–298

    Article  PubMed  CAS  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11:2153–2166

    Article  PubMed  CAS  Google Scholar 

  • Delgado MJ, Tresierra-Ayala A, Talbi C, Bedmar EJ (2006) Functional characterization of the Bradyrhizobium japonicum modA and modB genes involved in molybdenum transport. Microbiology 152:199–207

    Article  PubMed  CAS  Google Scholar 

  • Detro-Dassen S, Schänzler M, Lauks H, Martin I, zu Berstenhorst SM, Nothmann D, Torres-Salazar D, Hidalgo P, Schmalzing G, Fahlke C (2008) Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J Biol Chem 283:4177–4188

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Magaña A, Aguilar-Barajas E, Moreno-Sánchez R, Ramírez-Díaz MI, Riveros-Rosas H, Vargas E, Cervantes C (2009) Short-chain chromate ion transporter proteins from Bacillus subtilis confer chromate resistance in Escherichia coli. J Bacteriol 191:5441–5445

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Pérez C, Cervantes C, Campos-García J, Julian-Sánchez A, Riveros-Rosas H (2007) Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J 274:6215–6227

    Article  PubMed  CAS  Google Scholar 

  • Farmer KL, Thomas MS (2004) Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulfur availability. J Bacteriol 186:270–277

    Article  PubMed  CAS  Google Scholar 

  • Felce J, Saier MH Jr (2004) Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J Mol Microbiol Biotechnol 8:169–176

    Article  PubMed  CAS  Google Scholar 

  • Furlong CL (1987) Osmotic-shock-sensitive transport systems. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 768–796

    Google Scholar 

  • Gerber S, Comellas-Bigler M, Goetz BA, Locher KP (2008) Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321:246–250

    Article  PubMed  CAS  Google Scholar 

  • Gisin J, Muller A, Pfander Y, Leimkuhler S, Narberhaus F, Masepohl B (2010) A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 192:5943–5952

    Article  PubMed  CAS  Google Scholar 

  • Gourley DG, Schuttelkopf AW, Anderson LA, Price NC, Boxer DH, Hunter WN (2001) Oxyanion binding alters conformation and quaternary structure of the c-terminal domain of the transcriptional regulator modE Implications for molybdate-dependent regulation, signaling, storage, and transport. J Biol Chem 276:20641–20647

    Article  PubMed  CAS  Google Scholar 

  • Green LS, Grossman AR (1988) Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol 170:583–587

    PubMed  CAS  Google Scholar 

  • Grunden AM, Shanmugam KT (1997) Molybdate transport and regulation in bacteria. Arch Microbiol 168:345–354

    Article  PubMed  CAS  Google Scholar 

  • Grunden AM, Ray RM, Rosentel JK, Healy FG, Shanmugam KT (1996) Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178:735–744

    PubMed  CAS  Google Scholar 

  • Guédon E, Martin-Verstraete I (2007) Cysteine metabolism and its regulation in bacteria. In: Wendisch VF (ed) Amino acids biosynthesis pathways, regulation and metabolic engineering, vol 5. Springer-Verlag, Berlin, Heidelberg, pp 195–218

    Chapter  Google Scholar 

  • Hall DR, Gourley DG, Leonard GA, Duke EM, Anderson LA, Boxer DH, Hunter WN (1999) The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds. EMBO J 18:1435–1446

    Article  PubMed  CAS  Google Scholar 

  • Han MJ, Lee SY (2006) The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439

    Article  PubMed  CAS  Google Scholar 

  • Harris RM, Webb DC, Howitt SM, Cox GB (2001) Characterization of PitA and PitB from Escherichia coli. J Bacteriol 183:5008–5014

    Article  PubMed  CAS  Google Scholar 

  • He JJ, Quiocho FA (1993) Dominant role of local dipoles in stabilizing uncompensated charges on a sulfate sequestered in a periplasmic active transport protein. Protein Sci 2:1643–1647

    Article  PubMed  CAS  Google Scholar 

  • Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009) High-level chromate resistance in Arthrobacter sp strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199

    Article  PubMed  CAS  Google Scholar 

  • Hille R (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367

    Article  PubMed  CAS  Google Scholar 

  • Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216

    Article  PubMed  CAS  Google Scholar 

  • Hollenstein K, Comellas-Bigler M, Bevers LE, Feiters MC, Meyer-Klaucke W, Hagedoorn PL, Locher KP (2009) Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins. J Biol Inorg Chem 14:663–672

    Article  PubMed  CAS  Google Scholar 

  • Hryniewicz MM, Kredich NM (1991) The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol 173:5876–5886

    PubMed  CAS  Google Scholar 

  • Hryniewicz MM, Kredich NM (1995) Hydroxyl radical footprints and half-site arrangements of binding sites for the CysB transcriptional activator of Salmonella typhimurium. J Bacteriol 177:2343–2353

    PubMed  CAS  Google Scholar 

  • Hryniewicz M, Sirko A, Palucha A, Bock A, Hulanicka D (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172:3358–3366

    PubMed  CAS  Google Scholar 

  • Hu Y, Rech S, Gunsalus RP, Rees DC (1997) Crystal structure of the molybdate binding protein ModA. Nat Struct Biol 4:703–707

    Article  PubMed  CAS  Google Scholar 

  • Hummerjohann J, Kuttel E, Quadroni M, Ragaller J, Leisinger T, Kertesz MA (1998) Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology 144:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Imperial J, Hadi M, Amy NK (1998) Molybdate binding by ModA, the periplasmic component of the Escherichia coli mod molybdate transport system. Biochim Biophys Acta 1370:337–346

    Article  PubMed  CAS  Google Scholar 

  • Iwanicka-Nowicka R, Zielak A, Cook AM, Thomas MS, Hryniewicz MM (2007) Regulation of sulfur assimilation pathways in Burkholderia cenocepacia: identification of transcription factors CysB and SsuR and their role in control of target genes. J Bacteriol 189:1675–1688

    Article  PubMed  CAS  Google Scholar 

  • Jacobson BL, Quiocho FA (1988) Sulfate-binding protein dislikes protonated oxyacids. A molecular explanation. J Mol Biol 204:783–787

    Article  PubMed  CAS  Google Scholar 

  • Jacobson BL, He JJ, Vermersch PS, Lemon DD, Quiocho FA (1991) Engineered interdomain disulfide in the periplasmic receptor for sulfate transport reduces flexibility. Site-directed mutagenesis and ligand-binding studies. J Biol Chem 266:5220–5225

    PubMed  CAS  Google Scholar 

  • Jímenez-Mejía R, Campos-Garcia J, Cervantes C (2006) Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 262:178–184

    Article  PubMed  CAS  Google Scholar 

  • Johnson MK, Rees DC, Adams MW (1996) Tungstoenzymes. Chem Rev 96:2817–2840

    Article  PubMed  CAS  Google Scholar 

  • Juhnke S, Peitzsch N, Hübener N, Große C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  PubMed  CAS  Google Scholar 

  • Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152:279–290

    Article  PubMed  CAS  Google Scholar 

  • Kertesz MA, Leisinger T, Cook AM (1993) Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J Bacteriol 175:1187–1190

    PubMed  CAS  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  PubMed  CAS  Google Scholar 

  • Kouzuma A, Endoh T, Omori T, Nojiri H, Yamane H, Habe H (2008) Transcription factors CysB and SfnR constitute the hierarchical regulatory system for the sulfate starvation response in Pseudomonas putida. J Bacteriol 190:4521–4531

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM (1992) The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6:2747–2753

    Article  PubMed  CAS  Google Scholar 

  • Laudenbach DE, Grossman AR (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: evidence for function in sulfate transport. J Bacteriol 173:2739–2750

    PubMed  CAS  Google Scholar 

  • Lawson DM, Williams CE, Mitchenall LA, Pau RN (1998) Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 12 A resolution crystal structure of Azotobacter vinelandii ModA. Structure 6:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Lindblow-Kull C, Kull FJ, Shrift A (1985) Single transporter for sulfate, selenate, and selenite in Escherichia coli K-12. J Bacteriol 163:1267–1269

    PubMed  CAS  Google Scholar 

  • Lochowska A, Iwanicka-Nowicka R, Plochocka D, Hryniewicz MM (2001) Functional dissection of the LysR-type CysB transcriptional regulator Regions important for DNA binding, inducer response, oligomerization, and positive control. J Biol Chem 276:2098–2107

    Article  PubMed  CAS  Google Scholar 

  • Makdessi K, Andreesen JR, Pich A (2001) Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 276:24557–24564

    Article  PubMed  CAS  Google Scholar 

  • Makdessi K, Fritsche K, Pich A, Andreesen JR (2004) Identification and characterization of the cytoplasmic tungstate/molybdate-binding protein (Mop) from Eubacterium acidaminophilum. Arch Microbiol 181:45–51

    Article  PubMed  CAS  Google Scholar 

  • Mampel J, Maier E, Tralau T, Ruff J, Benz R, Cook AM (2004) A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2. Biochem J 383:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mansilla MC, de Mendoza D (2000) The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146:815–821

    PubMed  CAS  Google Scholar 

  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    PubMed  CAS  Google Scholar 

  • Maupin-Furlow JA, Rosentel JK, Lee JH, Deppenmeier U, Gunsalus RP, Shanmugam KT (1995) Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J Bacteriol 177:4851–4856

    PubMed  CAS  Google Scholar 

  • Monroe RS, Ostrowski J, Hryniewicz MM, Kredich NM (1990) In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium. J Bacteriol 172:6919–6929

    PubMed  CAS  Google Scholar 

  • Mouncey NJ, Mitchenall LA, Pau RN (1995) Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. J Bacteriol 177:5294–5302

    PubMed  CAS  Google Scholar 

  • Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721

    Article  PubMed  CAS  Google Scholar 

  • Neubauer H, Pantel I, Lindgren PE, Götz F (1999) Characterization of the molybdate transport system ModABC of Staphylococcus carnosus. Arch Microbiol 172:109–115

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653

    PubMed  CAS  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH Jr (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180:5799–5802

    PubMed  CAS  Google Scholar 

  • Ohta N, Galsworthy PR, Pardee AB (1971) Genetics of sulfate transport by Salmonella typhimurium. J Bacteriol 105:1053–1062

    CAS  Google Scholar 

  • Ostrowski J, Kredich NM (1991) Negative autoregulation of cysB in Salmonella typhimurium: in vitro interactions of CysB protein with the cysB promoter. J Bacteriol 173:2212–2218

    PubMed  CAS  Google Scholar 

  • Oswald C, Holland IB, Schmitt L (2006) The motor domains of ABC-transporters. What can structures tell us? Naunyn Schmiedebergs Arch Pharmacol 372:385–399

    Article  PubMed  CAS  Google Scholar 

  • Parra F, Britton P, Castle C, Jones-Mortimer MC, Kornberg HL (1983) Two separate genes involved in sulphate transport in Escherichia coli K12. J Gen Microbiol 129:357–358

    PubMed  CAS  Google Scholar 

  • Pau RN (2004) Molybdenum uptake and homeostasis. In: Klipp W, Masepohl B, Gallon JR, Newton WE (eds) Genetics and regulation of nitrogen fixation in free-living bacteria. Kluwer Academic Publishers, Netherlands, pp 225–256

    Google Scholar 

  • Pflugrath JW, Quiocho FA (1985) Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bond. Nature 314:257–260

    Article  PubMed  CAS  Google Scholar 

  • Pflugrath JW, Quiocho FA (1988) The 2 Å resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium. J Mol Biol 200:163–180

    Article  PubMed  CAS  Google Scholar 

  • Pimentel BE, Moreno-Sánchez R, Cervantes C (2002) Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett 212:249–254

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101:18228–18233

    Article  PubMed  CAS  Google Scholar 

  • Quiocho FA (1996) Atomic basis of the exquisite specificity of phosphate and sulfate transport receptors. Kidney Int 49:943–946

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Zimmermann P, Amrhein N, Bucher M (2004) Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. Plant J 39:13–28

    Article  PubMed  CAS  Google Scholar 

  • Ravera S, Virkki LV, Murer H, Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol Cell Physiol 293:C606–C620

    Article  PubMed  CAS  Google Scholar 

  • Regulski EE, Moy RH, Weinberg Z, Barrick JE, Yao Z, Ruzzo WL, Breaker RR (2008) A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Mol Microbiol 68:918–932

    Article  PubMed  CAS  Google Scholar 

  • Roca AI, Almada AE, Abajian AC (2008) ProfileGrids as a new visual representation of large multiple sequence alignments: a case study of the RecA protein family. BMC Bioinformatics 9:554

    Article  PubMed  CAS  Google Scholar 

  • Rosentel JK, Healy F, Maupin-Furlow JA, Lee JH, Shanmugam KT (1995) Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli. J Bacteriol 177:4857–4864

    PubMed  CAS  Google Scholar 

  • Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J (2005) Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6:121

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186

    Article  PubMed  CAS  Google Scholar 

  • Salaun C, Rodrigues P, Heard JM (2001) Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J Virol 75:5584–5592

    Article  PubMed  CAS  Google Scholar 

  • Scheffel F, Demmer U, Warkentin E, Hülsmann A, Schneider E, Ermler U (2005) Structure of the ATPase subunit CysA of the putative sulfate ATP-binding cassette (ABC) transporter from Alicyclobacillus acidocaldarius. FEBS Lett 579:2953–2958

    Article  PubMed  CAS  Google Scholar 

  • Schüttelkopf AW, Boxer DH, Hunter WN (2003) Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains. J Mol Biol 326:761–767

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G, Hagedoorn P, Fischer K (2007) Molybdate and tungstate: uptake, homeostasis, cofactors, and enzymes. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals, vol 6. Springer-Verlag, Berlin, pp 421–451

    Chapter  Google Scholar 

  • Scott C, Hilton ME, Coppin CW, Russell RJ, Oakeshott JG, Sutherland TD (2007) A global response to sulfur starvation in Pseudomonas putida and its relationship to the expression of low-sulfur-content proteins. FEMS Microbiol Lett 267:184–193

    Article  PubMed  CAS  Google Scholar 

  • Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177

    PubMed  CAS  Google Scholar 

  • Self WT, Grunden AM, Hasona A, Shanmugam KT (2001) Molybdate transport. Res Microbiol 152:311–321

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Grossman AR (2006) The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J Biol Chem 281:22964–22973

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    PubMed  CAS  Google Scholar 

  • Sirko A, Hryniewicz M, Hulanicka D, Böck A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172:3351–3357

    PubMed  CAS  Google Scholar 

  • Smart JP, Cliff MJ, Kelly DJ (2009) A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter. Mol Microbiol 74:742–757

    Article  PubMed  CAS  Google Scholar 

  • Stearns DM (2000) Is chromium a trace essential metal? Biofactors 11:149–162

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  PubMed  CAS  Google Scholar 

  • Tam R, Saier MH Jr (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taveirne ME, Sikes ML, Olson JW (2009) Molybdenum and tungsten in Campylobacter jejuni: their physiological role and identification of separate transporters regulated by a single ModE-like protein. Mol Microbiol 74:758–771

    Article  PubMed  CAS  Google Scholar 

  • Tralau T, Vuilleumier S, Thibault C, Campbell BJ, Hart CA, Kertesz MA (2007) Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J Bacteriol 189:6743–6750

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227

    Article  PubMed  CAS  Google Scholar 

  • Valdés J, Veloso F, Jedlicki E, Holmes D (2003) Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4:51

    Article  PubMed  Google Scholar 

  • van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T (1996) Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178:5438–5446

    PubMed  Google Scholar 

  • van der Ploeg JR, Iwanicka-Nowicka R, Kertesz MA, Leisinger T, Hryniewicz MM (1997) Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179:7671–7678

    PubMed  Google Scholar 

  • Vincent JB (2004) Recent developments in the biochemistry of chromium(III). Biol Trace Elem Res 99:1–16

    Article  PubMed  CAS  Google Scholar 

  • Vincent JB (2010) Chromium: celebrating 50 years as an essential element? Dalton Trans 39:3787–3794

    Article  PubMed  CAS  Google Scholar 

  • von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, Snel B, Bork P (2007) STRING 7—recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35:D358–D362

    Article  Google Scholar 

  • Wagner UG, Stupperich E, Kratky C (2000) Structure of the molybdate/tungstate binding protein Mop from Sporomusa ovata. Structure 8:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Walkenhorst HM, Hemschemeier SK, Eichenlaub R (1995) Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Microbiol Res 150:347–361

    PubMed  CAS  Google Scholar 

  • Wang G, Angermuller S, Klipp W (1993) Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol 175:3031–3042

    PubMed  CAS  Google Scholar 

  • Weinitschke S, Denger K, Cook AM, Smits TH (2007) The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology 153:3055–3060

    Article  PubMed  CAS  Google Scholar 

  • Wooff E, Michell SL, Gordon SV, Chambers MA, Bardarov S, Jacobs WR Jr, Hewinson RG, Wheeler PR (2002) Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Mol Microbiol 43:653–663

    Article  PubMed  CAS  Google Scholar 

  • Zahalak M, Pratte B, Werth KJ, Thiel T (2004) Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 51:539–549

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gladyshev VN (2008) Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol 379:881–899

    Article  PubMed  CAS  Google Scholar 

  • Zolotarev AS, Unnikrishnan M, Shmukler BE, Clark JS, Vandorpe DH, Grigorieff N, Rubin EJ, Alper SL (2008) Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp Biochem Physiol A Mol Integr Physiol 149:255–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Coordinación de Investigación Científica (UMSNH; 2.6), Consejo Nacional de Ciencia y Tecnología-México (Conacyt, 79190), and Dirección General de Asuntos del Personal Académico (UNAM; IN208308, IN208510). EA-B and CD-P were recipients of postgraduate fellowships from Conacyt and UMSNH, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cervantes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar-Barajas, E., Díaz-Pérez, C., Ramírez-Díaz, M.I. et al. Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24, 687–707 (2011). https://doi.org/10.1007/s10534-011-9421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9421-x

Keywords

Navigation