Skip to main content
Log in

Effects of divalent cations on encapsulation and release in the GroEL-assisted folding

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Chaperonin GroEL assists protein folding in the presence of ATP and magnesium. Recent studies have shown that several divalent cations other than magnesium induce conformational changes of GroEL, thereby influencing chaperonin-assisted protein folding, but little is known about the detailed mechanism for such actions. Thus, the effects of divalent cations on protein encapsulation by GroEL/ES complexes were investigated. Of the divalent cations, not only magnesium, but also manganese ions enabled the functional refolding and release of 5,10-methylenetetrahydroforate reductase (METF) by GroEL. Neither ATP hydrolysis nor METF refolding was observed in the presence of zinc ion, whereas only ATP hydrolysis was induced by cobalt and nickel ions. SDS-PAGE and gel filtration analyses revealed that cobalt, nickel and zinc ions permit the formation of stable substrate-GroEL-GroES cis-ternary complexes, but prevent the release of METF from GroEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Azem A, Diamant S, Goloubinoff P (1994) Effect of divalent cations on the molecular structure of the GroEL oligomer. Biochemistry 33:6671–6675

    Article  PubMed  CAS  Google Scholar 

  • Badcoe IG, Smith CJ, Wood S, Halsall DJ, Holbrook JJ, Lund P, Clarke AR (1991) Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry 30:9195–9200

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Braig K (1998) Chaperonins. Curr Opin Struct Biol 8:159–165

    Article  PubMed  CAS  Google Scholar 

  • Brazil BT, Ybarra J, Horowitz PM (1998) Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions. J Biol Chem 273:3257–3263

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107:235–246

    Article  PubMed  CAS  Google Scholar 

  • Diamant S, Azem A, Weiss C, Goloubinoff P (1995) Increased efficiency of GroE-assisted protein folding by manganese ions. J Biol Chem 270:28387–28391

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1996) The chaperonins. Academic Press, San Diego

  • Farr GW, Fenton WA, Chaudhuri TK, Clare DK, Saibil HR, Horwich AL (2003) Folding with and without encapsulation by cis- and trans-only GroEL-GroES complexes. Embo J 22:3220–3230

    Article  PubMed  CAS  Google Scholar 

  • Fisher MT (1992) Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 31:3955–3963

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–889

    Article  PubMed  CAS  Google Scholar 

  • Hartman DJ, Surin BP, Dixon NE, Hoogenraad NJ, Hoj PB (1993) Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc Natl Acad Sci USA 90:2276–2280

    Article  PubMed  CAS  Google Scholar 

  • Holl-Neugebauer B, Rudolph R, Schmidt M, Buchner J (1991) Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry 30:11609–11614

    Article  PubMed  CAS  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  PubMed  CAS  Google Scholar 

  • Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Amada K, Taguchi H, Yoshida M (1997) Chaperonin-mediated folding of green fluorescent protein. J Biol Chem 272:12468–12474

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Mayhew M, Langer T, Hartl FU (1993) The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366:228–233

    Article  PubMed  CAS  Google Scholar 

  • Melkani GC, Zardeneta G, Mendoza JA (2003) The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure. Biometals 16:479–484

    Article  PubMed  CAS  Google Scholar 

  • Mizobata T, Akiyama Y, Ito K, Yumoto N, Kawata Y (1992) Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP. J Biol Chem 267:17773–17779

    PubMed  CAS  Google Scholar 

  • Motojima F, Yoshida M (2003) Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP. J Biol Chem 278:26648–26654

    Article  PubMed  CAS  Google Scholar 

  • Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    Article  PubMed  CAS  Google Scholar 

  • Sheppard CA, Trimmer EE, Matthews RG (1999) Purification and properties of NADH-dependent 5, 10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli. J Bacteriol 181:718–725

    PubMed  CAS  Google Scholar 

  • Taguchi H, Tsukuda K, Motojima F, Koike-Takeshita A, Yoshida M (2004) BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers. J Biol Chem 279:45737–45743

    Article  PubMed  CAS  Google Scholar 

  • Todd MJ, Viitanen PV, Lorimer GH (1993) Hydrolysis of adenosine 5′-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry 32:8560–8567

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the program for Basic Research Activities for Innovative Biosciences (Bio-oriented Technology Research Advancement Institution: BRAIN) of Japan, and by the “Academic Frontier” Project for Private Universities: matching fund subsidy from MEXT of Japan, 2004–2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuda, H., Sakuhana, C., Yamamoto, R. et al. Effects of divalent cations on encapsulation and release in the GroEL-assisted folding. Biometals 20, 903–910 (2007). https://doi.org/10.1007/s10534-006-9078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9078-z

Keywords

Navigation