Skip to main content
Log in

Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Dissolved organic carbon (DOC) concentrations have risen in upland waters across large areas of Europe and North America. Two proposed drivers of these increases are (1) deposition of atmospheric pollutant nitrogen (N) with consequent effects on plant and decomposer carbon dynamics, and (2) soil recovery from acidification associated with decreasing sulphur deposition. Examination of 12 European and North American field N addition experiments showed inconsistent (positive, neutral, and negative) responses of DOC to N addition. However, responses were linked to the form of N added and to resulting changes in soil acidity. Sodium nitrate additions consistently increased DOC, whereas ammonium salts additions usually decreased DOC. Leachate chemistry was used to calculate an index of “ANC forcing” of the effect of fertilization on the acid-base balance, which showed that DOC increased in response to all de-acidifying N additions, and decreased in response to all but three acidifying N additions. Exceptions occurred at two sites where N additions caused tree mortality, and one experiment located on an older, unglaciated soil with high anion adsorption capacity. We conclude that collectively these experiments do not provide clear support for the role of N deposition as the sole driver of rising DOC, but are largely consistent with an acidity-change mechanism. It is however possible that the unintended effect of acidity change on DOC mobility masks genuine effects of experimental N enrichment on DOC production and degradation. We suggest that there is a need, more generally, for interpretation of N manipulation experiments to take account of the effects that experimentally-induced changes in acidity, rather than elevated N per se, may have on ecosystem biogeochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–224. doi:10.1016/0169-5347(92)90048-G

    Article  Google Scholar 

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems: excess nitrogen from fossil fuel combustion may stress the biosphere. Bioscience 39:378–386. doi:10.2307/1311067

    Article  Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934. doi:10.2307/1313296

    Article  Google Scholar 

  • Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of Northeastern forests? Bioscience 53:375–389. doi:10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2

    Article  Google Scholar 

  • Adams MB, DeWalle DR, Hom JL (2006) The Fernow watershed acidification study. Springer, Dordrecht, 279 pp

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25. doi:10.1139/er-5-1-1

    Article  Google Scholar 

  • Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Glob Biogeochem Cycl 18:GB1024. doi:10.1029/2003GB002058

  • Bowman WD, Gartner JR, Holland K, Wiedermann M (2006) Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecol Appl 16:1183–1193. doi:10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Lilmpense J, Fenner N, Ellis T, Gerdola R, Hajek M, Hajek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389. doi:10.1073/pnas.0606629104

    Article  Google Scholar 

  • Clark JM, Chapman PJ, Adamson JK, Lane SN (2005) Influence of drought induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Chang Biol 11:791–809. doi:10.1111/j.1365-2486.2005.00937.x

    Article  Google Scholar 

  • Cooper DM (2005) Evidence of sulphur and nitrogen deposition signals at the United Kingdom acid waters monitoring network sites. Environ Pollut 137:41–54. doi:10.1016/j.envpol.2004.12.030

    Article  Google Scholar 

  • Corre MD, Beese FO, Brumme R (2003) Soil nitrogen cycle in high nitrogen deposition forest: changes under nitrogen saturation and liming. Ecol Appl 13:287–298. doi:10.1890/1051-0761(2003)013[0287:SNCIHN]2.0.CO;2

    Article  Google Scholar 

  • Cronan CS, Aiken GR (1985) Chemistry and transport of humic substances in forested watersheds of the Adirondack Park, New York. Geochim Cosmochim Acta 49:1697–1705. doi:10.1016/0016-7037(85)90140-1

    Article  Google Scholar 

  • Curtis CJ (1998) Climatic and hydrologic control of DOM concentration and quality in lakes. In: Hessen D (ed) Aquatic humic substances: ecological studies, vol 133. Springer, Berlin, pp 93–105

    Google Scholar 

  • David M, Vance G, Kahl J (1999) Chemistry of dissolved organic carbon at Bear Brook watershed, Maine: stream water response to (NH4)2SO4 additions. Environ Monit Assess 55:149–163. doi:10.1023/A:1006150525494

    Article  Google Scholar 

  • De Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol 12:1151–1173

    Article  Google Scholar 

  • Driscoll CT, Driscoll KM, Roy KM, Mitchell MJ (2003) Chemical response of lakes in the Adirondack region of New York to declines in acid deposition. Environ Sci Technol 37:2036–2042. doi:10.1021/es020924h

    Article  Google Scholar 

  • Elvir JA, Rustad LG, Wiersma B, Fernandez I, White AS, White GJ (2005) Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brook Watershed in Maine. Can J Res 35:1402–1410. doi:10.1139/x05-072

    Article  Google Scholar 

  • Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (NaNO3 and NH4NO3) at Aber Forest, Wales: I. response of throughfall and soil water chemistry. For Ecol Manag 71:45–59

    Article  Google Scholar 

  • Emmett BA, Reynolds B, Silgram M, Sparks TH, Woods C (1998) The consequences of chronic nitrogen additions on N cycling and soilwater chemistry in a Sitka spruce stand. N Wales For Ecol Manag 101:165–175

    Google Scholar 

  • Emmett BA, Gordon C, Williams DL, Woods C, Norris D, Bell SA, Pugh B (2001) Grazing/nitrogen deposition interactions in upland acid grassland. Report to the UK Department of the Environment, Transport and the Regions, Centre for Ecology and Hydrology, Bangor, 53 pp

  • Evans CD, Cullen JM, Alewell C, Kopáček J, Marchetto A, Moldan F, Prechtel A, Rogora M, Veselý J, Wright R (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5:283–298

    Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ Pollut 137:55–71. doi:10.1016/j.envpol.2004.12.031

    Article  Google Scholar 

  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS (2006a) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Chang Biol 12:2044–2053. doi:10.1111/j.1365-2486.2006.01241.x

    Article  Google Scholar 

  • Evans CD, Caporn SJM, Carroll JA, Pilkington MG, Wilson DB, Ray N, Cresswell N (2006b) Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition. Environ Pollut 143:468–478. doi:10.1016/j.envpol.2005.12.004

    Article  Google Scholar 

  • Evans CD, Freeman C, Cork LG, Thomas DN, Reynolds B, Billett MF, Garnett MH, Norris D (2007) Evidence against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophys Res Lett 34:L07407. doi:10.1029/2007GL029431 doi:10.1029/2007GL029431

  • Findlay SEG (2005) Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition? Front Ecol Environ 3:133–137

    Article  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63:433–462. doi:10.1111/j.1469-185X.1988.tb00725.x

    Article  Google Scholar 

  • Fowler D, Smith R, Muller J, Cape JN, Sutton M, Erisman JW, Fagerli H (2007) Long term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities. Water Air Soil Pollut Focus 7:41–47. doi:10.1007/s11267-006-9102-x

    Article  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785. doi:10.1038/35090628

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198. doi:10.1038/nature02707

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in a forest ecosystem. For Ecol Manag 196:159–171. doi:10.1016/j.foreco.2004.03.018

    Article  Google Scholar 

  • Goodale CL, Aber JD, Vitousek PM (2003) An unexpected nitrate decline in New Hampshire streams. Ecosystems (N Y, Print) 6:75–86. doi:10.1007/s10021-002-0219-0

    Article  Google Scholar 

  • Gundersen P, Callesen I, deVries W (1998) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407. doi:10.1016/S0269-7491(98)80060-2

    Article  Google Scholar 

  • Hay GW, James JH, Vanloon GW (1985) Solubilization effects of simulated acid rain on the organic matter of forest soil; preliminary results. Soil Sci 139:422–430. doi:10.1097/00010694-198505000-00007

    Article  Google Scholar 

  • Hejzlar J, Dubrovsky M, Buchtele J, Ruzicka M (2003) The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malse River, South Bohemia). Sci Total Environ 310:143–152. doi:10.1016/S0048-9697(02)00634-4

    Article  Google Scholar 

  • Hessen DA, Gjessing ET, Knulst J, Fjeld E (1997) TOC fluctuations in a humic lake as related to catchment acidification, season and climate. Biogeochemistry 36:139–151. doi:10.1023/A:1005740030477

    Article  Google Scholar 

  • Hongve D, Riise G, Kristiansen JF (2004) Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water–a result of increased precipitation? Aquat Sci 66:231–238. doi:10.1007/s00027-004-0708-7

    Article  Google Scholar 

  • Hudson JJ, Dillon PJ, Somers KM (2003) Long-term patterns in dissolved organic carbon in boreal lakes: the role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition. Hydrol Earth Syst Sci 7:390–398

    Google Scholar 

  • Jefts S, Fernandez IJ, Rustad LE, Dail DB (2004) Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA. For Ecol Manage 189:189–205. doi:10.1016/j.foreco.2003.08.011

    Article  Google Scholar 

  • Kahl J, Norton SA, Fernandez IJ, Rustad L, Handley M (1999) Nitrogen and sulfur input-output budgets in the experimental and reference watersheds, Bear Brook watershed in Maine (BBWM). Environ Monit Assess 55:113–131. doi:10.1023/A:1006162927311

    Article  Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of organic matter in soils: a review. Soil Sci 165:277–304. doi:10.1097/00010694-200004000-00001

    Article  Google Scholar 

  • Kennedy J, Billett MF, Duthie D, Fraser AR, Harrison AF (1996) Organic matter retention in an upland humic podzol; the effects of pH and solute type. Eur J Soil Sci 47:615–625. doi:10.1111/j.1365-2389.1996.tb01860.x

    Article  Google Scholar 

  • Kjønaas OJ, Stuanes AO, Huse M (1998) Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden. For Ecol Manag 101:227–249

    Article  Google Scholar 

  • Kopáček J, Stuchlík E, Hardekopf D (2006) Chemical composition of the Tatra Mountain lakes: recovery from acidification. Biologia 61:S21–S33. doi:10.2478/s11756-006-0117-6

    Article  Google Scholar 

  • Krug EC, Frink CR (1983) Acid rain on acid soil: a new perspective. Science 221:520–525. doi:10.1126/science.221.4610.520

    Article  Google Scholar 

  • Lamontagne S, Schiff SL (1999) The response of a heterogeneous upland boreal shield catchment to a short term NO 3 addition. Ecosystems (N Y, Print) 2:460–473. doi:10.1007/s100219900094

    Article  Google Scholar 

  • Macdonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen inputs together with nitrogen enrichment predict nitrate leaching in European forests. Glob Chang Biol 8:1028–1033. doi:10.1046/j.1365-2486.2002.00532.x

    Article  Google Scholar 

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Mellillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manag 196:7–28

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–851. doi:10.1038/nature05847

    Article  Google Scholar 

  • McDowell WH, Currie WS, Aber JD, Yano Y (1998) Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut 105:175–182. doi:10.1023/A:1005032904590

    Article  Google Scholar 

  • McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam J, Kaushal S (2004) Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. For Ecol Manag 196:29–41. doi:10.1016/j.foreco.2004.03.010

    Article  Google Scholar 

  • McNulty SG, Boggs J, Aber JD, Rustad LE, Magill AH (2005) Red spruce ecosystem level changes following 14 years of chronic N fertilization. For Ecol Manag 219:279–291. doi:10.1016/j.foreco.2005.09.004

    Article  Google Scholar 

  • Meesenburg H, Merino A, Meiwes KJ, Beese FO (2004) Effects of long-term application of ammonium sulphate on nitrogen fluxes in a beech ecosystem at Solling, Germany. Water Air Soil Pollut Focus 4:415–426. doi:10.1023/B:WAFO.0000028368.77125.2b

    Article  Google Scholar 

  • Meiwes KJ, Merino A, Beese FO (1998) Chemical composition of throughfall, soil water, leaves and leaf litter in a beech forest receiving long term application of ammonium sulphate. Plant Soil 201:217–230. doi:10.1023/A:1004315513482

    Article  Google Scholar 

  • Moldan F, Kjønaas OJ, Stuanes AO, Wright RF (2006) Increased nitrogen in runoff and soil following 13 years of experimentally increased nitrogen deposition to a coniferous-forested catchment at Gårdsjön, Sweden. Environ Pollut 144:612–620. doi:10.1016/j.envpol.2006.01.041

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit H, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Rising freshwater dissolved organic carbon driven by changes in atmospheric deposition. Nature 450:537–540. doi:10.1038/nature06316

    Article  Google Scholar 

  • Mulder J, van den Burg D, Teminghoff EJM (1994) Depodzolisation due to acid rain: does aluminium complexation affect the solubility of humic substances? In: Senesi M, Miano TM (eds) Humic substances in the environment and implications on human health. Elsevier, pp 1173–1168

  • Mulder J, de Wit H, Boonen HW, Bakken LR (2001) Increased levels of aluminium in forest soils: effects on the stores of organic carbon. Water Air Soil Pollut 130:989–994. doi:10.1023/A:1013987607826

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietama A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148. doi:10.1038/18205

    Article  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems (N Y, Print) 5:29–48. doi:10.1007/s100210000058

    Article  Google Scholar 

  • Neff JC, Finlay JC, Zimov SA, Davydoc SP, Carrasco JJ, Schur EAG, Davydova AI (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33:L23401. doi:10.1029/2006GL028222

  • Norton S, Kahl J, Fernandez I, Haines T, Rustad L, Nodvin S, Scofield J, Strickland T, Erickson H, Wigington P, Lee J (1999a) The Bear Brook Watershed, Maine USA (BBWM). Environ Monit Assess 55:7–51

    Article  Google Scholar 

  • Norton S, Kahl J, Fernandez I (1999b) Altered soil-soil water interactions inferred from stream water chemistry at an artificially acidified watershed at Bear Brook Watershed, Maine USA. Environ Monit Assess 55:97–111

    Article  Google Scholar 

  • Norton SA, Fernandez IJ, Kahl JS, Reinhardt RI (2004) Acidification trends and the evolution of neutralization mechanisms through time at the Bear Brook Watershed in Maine, USA. Water Air Soil Pollut Focus 4:289–310. doi: 10.1023/B:WAFO.0000028361.47662.a4

    Article  Google Scholar 

  • Palmer SM, Hope D, Billett MF, Dawson JJC, Bryant C (2001) Sources of organic and inorganic carbon in aheadwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338. doi:10.1023/A:1006447706565

    Article  Google Scholar 

  • Pilkington MG, Caporn SJ, Carroll JA, Cresswell N, Lee JA, Ashenden TW, Brittain SA, Reynolds B, Emmett BA (2005a) Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry. Environ Pollut 135:29–40. doi:10.1016/j.envpol.2004.10.016

    Article  Google Scholar 

  • Pilkington MG, Caporn SJ, Carroll JA, Cresswell N, Lee JA, Brittain SA, Reynolds B, Emmett BA (2005b) Effects of increased deposition of atmospheric nitrogen on an upland moor: nitrogen budgets and nutrient accumulation. Environ Pollut 138:473–484. doi:10.1016/j.envpol.2005.04.011

    Article  Google Scholar 

  • Pregitzer KS, Zak DR, Burton AJ, Ashby JA, MacDonald NW (2004) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68:179–197. doi:10.1023/B:BIOG.0000025737.29546.fd

    Article  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2007) Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob Chang Biol 14:142–153

    Google Scholar 

  • Reuss JO, Johnson DW (1985) Effect of soil processes on the acidification of water by acid deposition. J Environ Qual 14:26–31

    Google Scholar 

  • Schindler DW, Bayley SE, Curtis PJ, Parker BR, Stainton MP, Kelly CA (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia 229:1–21

    Google Scholar 

  • Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36:9–28. doi:10.1023/A:1005792014547

    Article  Google Scholar 

  • Sheppard LJ, Crossley A, Leith ID, Hargreaves KJ, Carfrae JA, van Dijk N, Cape JN, Sleep D, Fowler D, Raven JA (2004) An automated wet deposition system to compare the effects of reduced and oxidised N on ombotrophic bog species: practical considerations. Water Air Soil Pollut Focus 4:197–205. doi:10.1007/s11267-004-3030-4

    Article  Google Scholar 

  • Skjelkvåle BL, Stoddard J, Jeffries D, Tørseth K, Høgåsen T, Bowman J, Mannio J, Monteith D, Mosello R, Rogora M, Rzychon D, Vesely J, Wieting J, Wilander A (2005) Regional scale evidence for improvements in surface water chemistry, 1990–2001. Environ Pollut 137:165–176. doi:10.1016/j.envpol.2004.12.023

    Article  Google Scholar 

  • Smemo KA, Zak DR, Pregitzer KS (2006) Chronic experimental NO3- deposition reduces the retention of leaf litter DOC in a northern hardwood forest soil. Soil Biol Biochem 38:1340–1347. doi:10.1016/j.soilbio.2005.09.029

    Article  Google Scholar 

  • Smemo KA, Zak , Pregitzer KS, Burton AJ (2007) Characteristics of DOC exported from northern hardwood forests receiving chronic experimental NO 3 deposition. Ecosystems (N Y, Print) 10:369–379. doi:10.1007/s10021-007-9014-2

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs. ACS advances in chemistry series no 237, Washington (DC). American Chemical Society, Washington, pp 223–282

    Google Scholar 

  • Stoddard JL, Karl JS, Deviney FA, DeWalle DR, Driscoll CT, Herlihy AT, Kellogg JH, Murdoch PS, Webb JR, Webster KE (2003) Response of surface water chemistry to the Clean Air Act amendments of 1990. Report EPA 620/R-03/001. United States Environmental Protection Agency, North Carolina

  • Templer PH, Lovett GM, Weathers KC, Findlay SE, Dawson TE (2005) Influence of tree species on forest nitrogen retention in the Catskill Mountains, New York, USA. Ecosystems (N Y, Print) 8:1–16. doi:10.1007/s10021-004-0230-8

    Article  Google Scholar 

  • Tipping E, Hurley MA (1988) A model of solid-solution interactions in acid organic soils, based on the complexation properties of humic substances. J Soil Sci 39:505–519. doi:10.1111/j.1365-2389.1988.tb01235.x

    Article  Google Scholar 

  • Tipping E, Woof C (1990) Humic substances in acid organic soils: modelling their release to the soil solution in terms of humic charge. J Soil Sci 41:573–586. doi:10.1111/j.1365-2389.1990.tb00227.x

    Article  Google Scholar 

  • Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD, Steudler PA (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Glob Chang Biol 9:346–357. doi:10.1046/j.1365-2486.2003.00591.x

    Article  Google Scholar 

  • Vestgarden LS, Abrahamsen G, Stuanes AO (2001) Soil solution response to nitrogen and magnesium application in a Scots pine forest. Soil Sci Soc Am J 65:1812–1823

    Article  Google Scholar 

  • Vestgarden LS, Nilsen P, Abrahamsen G (2004) Nitrogen cycling in Pinus sylvestris stands exposed to different nitrogen inputs. Scand J For Res 19:38–47. doi:10.1080/02827580310019572

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Vogt RD, Ranneklev SB, Mykkelbost TC (1994) The impact of acid treatment on soilwater chemistry at the HUMEX site. Environ Int 20:277–286. doi:10.1016/0160-4120(94)90111-2

    Article  Google Scholar 

  • Vuorenmaa J, Forsius M, Mannio J (2006) Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Sci Total Environ 365:47–65. doi:10.1016/j.scitotenv.2006.02.038

    Article  Google Scholar 

  • Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 6:921–933

    Article  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177. doi:10.1890/03-5120

    Article  Google Scholar 

  • Wallace ZP, Lovett GM, Hart JE, Machona B (2007) Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. For Ecol Manag 243:210–218

    Article  Google Scholar 

  • Whitehead DL, Dibb H, Hartley RD (1981) Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol Biochem 13:343–348. doi:10.1016/0038-0717(81)90074-2

    Article  Google Scholar 

  • Worrall F, Harriman R, Evans CD, Watts CD, Adamson J, Neal C, Tipping E, Burt T, Grieve I, Monteith D, Naden PS, Nisbet T, Reynolds B, Stevens P (2004a) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry 70:369–402. doi:10.1007/s10533-004-8131-7

    Article  Google Scholar 

  • Worrall F, Burt T, Adamson J (2004b) Can climate change explain increases in DOC flux from upland peat catchments? Sci Total Environ 326:95–112. doi:10.1016/j.scitotenv.2003.11.022

    Article  Google Scholar 

  • Worrall F, Burt T, Adamson J (2006) Do nitrogen inputs stimulate dissolved organic carbon production in upland peat bogs? Global Biogeochem Cycles 20:GB3013. doi:10.1029/2005GB002524 doi:10.1029/2005GB002524

  • WRB (2006) World reference base for soil resources 2006, 2nd edn. World Soil Resources Reports No. 103. FAO, Rome

  • Wright RF, Alewell C, Cullen J, Evans C, Marchetto A, Moldan F, Prechtel A, Rogora M (2001) Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol Earth Syst Sci 5:299–310

    Article  Google Scholar 

  • Yano Y, McDowell WH, Aber JD (2000) Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biol Biochem 32:1743–1751. doi:10.1016/S0038-0717(00)00092-4

    Article  Google Scholar 

  • Zak DR, Holmes WE, Tomlinson MJ, Pregitzer KS, Burton AJ (2006) Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO3- deposition. Ecosystems 9:242–253

    Article  Google Scholar 

  • Zech W, Guggenberger G, Schulten H-R (1994) Budgets and chemistry of dissolved organic carbon in forest soil: effects of anthropogenic soil acidification. Sci Total Environ 152:49–62. doi:10.1016/0048-9697(94)90550-9

    Article  Google Scholar 

Download references

Acknowledgements

The lead author was supported by two Natural Environment Research Council grants (NE/E004709/1 and NE/E011837/1). Ongoing UK experiments are supported by the Department of the Environment, Food and Rural Affairs. This study would not have been possible without the hard work and dedication of a great many people on all the experiments considered. We are grateful to all of them, as well as to the providers of two very helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, C.D., Goodale, C.L., Caporn, S.J.M. et al. Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry 91, 13–35 (2008). https://doi.org/10.1007/s10533-008-9256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9256-x

Keywords

Navigation