Skip to main content
Log in

Effect of Fenton reagent shock and recovery periods on anaerobic microbial community structure and degradation of chlorinated aliphatics

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This study investigates the effect of Fenton reagent on the structure and function of a microbial consortium during the anaerobic degradation of hexachloroethane (HCA) and tetrachloroethene (PCE). Anaerobic biodegradation tests of HCA and PCE were performed in batch reactors using an anaerobic microbial consortium that had been exposed to Fenton reagent for durations of 0, 0.04, and 2 days and then allowed to recover for periods of 0, 3, and 7 days. The bacterial community structure was determined using culture-independent methods of 16S rRNA gene sequencing and automated ribosomal intergenic spacer analysis. Larger recovery periods partially restored the microbial community structure; however, the recovery periods did not restore the loss of ability to degrade HCA and PCE in cultures shocked for 0.04 days, and PCE in cultures shocked for 2 days. Overall the exposure to Fenton reagent had an impact on bacterial community structure with downstream effects on HCA and PCE degradation. This study highlights that the impacts of short- and long-term shocks on microbial community structure and function can be correlated using a combination of biodegradation tests and community structure analysis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeniyi AS (2010) Effects of slash and burning on soil microbial diversity and abundance in the tropical rainforest ecosystem, Ondo State, Nigeria. Afr J Pant Sci 4:322–329

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Atlas RM (1997) Handbook of microbiological media, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Aulenta F, Majone M, Verbo P, Tandoi V (2002) Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation 13:411–424

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros Martin MM, Sanchez Perez JA, Acien Fernandez FG, Casas Lopez JL, Garcia-Ripoll AM, Arques A, Oller I, Malato Rodriguez S (2008) Combined photo-Fenton and biological oxidation for pesticide degradation: effect of photo-treated intermediates on biodegradation kinetics. Chemosphere 70:1476–1483

    Article  CAS  PubMed  Google Scholar 

  • Barbusinski K (2005) Toxicity of industrial wastewater treated by Fenton’s Reagent. Pol J Environ Study 14:11–16

    CAS  Google Scholar 

  • Bastida F, Hernández T, Albaladejo J, García C (2013) Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol Biochem 65:12–21

    Article  CAS  Google Scholar 

  • Bittkau A, Geyer R, Bhatt M, Schlosser D (2004) Enhancement of the biodegradability of aromatic groundwater contaminants. Toxicology 205:201–210

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Singh PK (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci USA 105:12503–12508. doi:10.1073/pnas.0801499105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman K (2009) Bacterial characterization of Louisiana groundwater contaminated by DNAPL-containing chloroethanes and other solvents. Dissertation, Louisiana State University

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bunge M, Wagner A, Fischer M, Andreesen JR, Lechner U (2008) Enrichment of a dioxin-dehalogenating dehalococcoides species in two-liquid phase cultures. Environ Microbiol 10:2670–2683. doi:10.1111/j.1462-2920.2008.01688.x

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156. doi:10.1128/aem.70.10.6147-6156.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Bio Sci Bioeng 89:489–491

    Article  CAS  Google Scholar 

  • Chapelle FH, Bradley PM, Casey CC (2005) Behavior of a chlorinated ethene plume following source-area treatment with Fenton’s reagent. Ground Water Monit R 25:131–141. doi:10.1111/j.1745-6592.2005.0020.x

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Corno G, Caravati E, Callieri C, Bertoni R (2008) Effect of predation pressure on bacterial abundance, diversity, and size-structure distribution in an oligotrophic system. J Limnol 67:107–119

    Article  Google Scholar 

  • Danovaro R, Luna GM, Dell’Anno A, Pietrangeli B (2006) Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Appl Environ Microbiol 72:5982–5989. doi:10.1128/aem.01361-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferguson SH, Ferguson SH, Woinarski AZ, Snape I, Morris CE, Revill AT (2004) A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil. Cold Reg Sci Technol 40:47–60

    Article  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microb 65:4630–4636

    CAS  Google Scholar 

  • Fletcher KE, Ritalahti KM, Pennell KD, Takamizawa K, Löffler FE (2008) Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp. and tetrachloroethene-dechlorinating desulfitobacterium hafniense strain JH1. Appl Environ Microbiol 74:6141–6143. doi:10.1128/aem.00994-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan X, Liu F, Xie Y, Zhu L, Han B (2013) Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater. Environ Geochem Health 35(4):535–549

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Frey B, Kölliker R, Widmer F (2005) Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J Microbiol Meth 61:349–360

    Article  CAS  Google Scholar 

  • Humphries JA, Ashe AMH, Smiley JA, Johnston CG (2005) Microbial community structure and trichloroethylene degradation in groundwater. Can J Microbiol 51:433–439

    Article  CAS  PubMed  Google Scholar 

  • Jho EH, Singhal N, Turner S (2010) Fenton degradation of tetrachloroethene and hexachloroethane in Fe(II) catalyzed systems. J Hazard Mater 184:234–240

    Article  CAS  PubMed  Google Scholar 

  • Lear G, Turner SJ, Lewis GD (2009) Effect of light regimes on the utilisation of an exogenous carbon source by freshwater biofilm bacterial communities. Aquat Ecol 43:207–220

    Article  CAS  Google Scholar 

  • Lee PKH, Warnecke F, Brodie EL, MacBeth TW, Conrad ME, Andersen GL, Alvarez-Cohen L (2012) Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. Environ Sci Technol 46:1044–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Long JL, Stensel HD, Ferguson JF, Strand SE, Ongerth JE (1993) Anaerobic and aerobic treatment of chlorinated aliphatic compounds. J Environ Eng 119:300–320

    Article  CAS  Google Scholar 

  • Macbeth TW, Cummings DE, Spring S, Petzke LM, Sorenson KS Jr (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70:7329–7341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maguerran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Mechichi T, Fardeau ML, Labat M, Garcia JL, Verhé F, Patel BKC (2000) Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester. Int J Syst Evol Micr 50:1259–1264

    Article  CAS  Google Scholar 

  • Miller CM, Valentine RL, Roehl ME, Alvarez PJJ (1996) Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton’s reagent. Water Res 30:2579–2586

    Article  CAS  Google Scholar 

  • Moon H, Shin D, Nam K, Kim J (2010) Distribution of the microbial community structure in sulfur-based autotrophic denitrification columns. J Environ Eng 136:481–486. doi:10.1061/(ASCE)EE.1943-7870.0000181

    Article  CAS  Google Scholar 

  • Nie M, Zhang X-d, Wang J-q, Jiang L-f, Yang J, Quan Z-x, Cui X-h, Fang C-m, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41:2535–2542. doi:10.1016/j.soilbio.2009.09.012

    Article  CAS  Google Scholar 

  • Okubo A, Sugiyama S (2009) Comparison of molecular fingerprinting methods for analysis of soil microbial community structure. Ecol Res 24:1399–1405

    Article  Google Scholar 

  • Or A, Gophna U (2011) Detection of spatial and temporal influences on bacterial communities in an urban stream by automated ribosomal intergenic ribosomal spacer analysis. Microbes Environ 26:360–366

    Article  PubMed  Google Scholar 

  • Païssé S, Goñi-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405

    Article  PubMed  Google Scholar 

  • Palmroth MRT, Langwaldt JH, Aunola TA, Goi A, Puhakka JA, Tuhkanen TA (2006) Treatment of PAH-contaminated soil by combination of Fenton’s reaction and biodegradation. J Chem Technol Biot 81:598–607

    Article  CAS  Google Scholar 

  • Ranjard L, Poly F, Lata JC, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated Ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossetti S, Aulenta F, Majone M, Crocetti G, Tandoi V (2008) Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1,1,2,2-tetrachloroethane to ethene. Biotechnol Bioeng 100:240–249

    Article  CAS  PubMed  Google Scholar 

  • Sahl JW, Munakata-Marr J, Crimi ML, Siegrist RL (2007) Coupling permanganate oxidation with microbial dechlorination of tetrachloroethene. Water Environ Res 79:5–12

    Article  CAS  PubMed  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol R 68:686–691

    Article  Google Scholar 

  • Sercu B, Jones ADG, Wu CH, Escobar MH, Serlin CL, Knapp TA, Andersen GL, Holden PA (2013) The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. Microbial Ecol 65:39–49

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C (2013) Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ 445–446:347–355

    Article  PubMed  Google Scholar 

  • Smith BY, Turner SJ, Rodgers KA (2003) Opal-A and associated microbes from Wairakei, New Zealand: the first 300 days. Mineral Mag 67:563–579

    Article  CAS  Google Scholar 

  • Suihko ML, Partanen L, Mattila-Sandholm T, Raaska L (2005) Occurrence and molecular characterization of cultivable mesophilic and thermophilic obligate anaerobic bacteria isolated from paper mills. Syst Appl Microbiol 28:555–561. doi:10.1016/j.syapm.2005.03.005

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Lee BD, Hosomi M (2000) Decomposition of aqueous tetrachloroethylene by Fenton oxidation treatment. Water Sci Technol 42:203–208

    CAS  Google Scholar 

Download references

Acknowledgments

EJ acknowledges receiving financial support from the New Zealand Foundation for Research, Science and Technology. Research funding was provided by Pattle Delamore Partners and the University of Auckland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jho, E.H., Shin, D., Turner, S.J. et al. Effect of Fenton reagent shock and recovery periods on anaerobic microbial community structure and degradation of chlorinated aliphatics. Biodegradation 25, 253–264 (2014). https://doi.org/10.1007/s10532-013-9657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9657-y

Keywords

Navigation