Skip to main content
Log in

Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

We examined the degradation of amaranth, a representative azo dye, by Bjerkandera adusta Dec 1. The degradation products were analyzed by high performance liquid chromatography (HPLC), visible absorbance, and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). At the primary culture stage (3 days), the probable reaction intermediates were 1-aminonaphthalene-2,3,6-triol, 4-(hydroxyamino) naphthalene-1-ol, and 2-hydroxy-3-[2-(4-sulfophenyl) hydrazinyl] benzenesulfonic acid. After 10 days, the reaction products detected were 4-nitrophenol, phenol, 2-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzene sulfonic acid, and 3,4′-disulfonyl azo benzene, suggesting that no aromatic amines were created. Manganese-dependent peroxidase activity increased sharply after 3 days culture. Based on these results, we herein propose, for the first time, a degradation pathway for amaranth. Our results suggest that Dec 1 degrades amaranth via the combined activities of peroxidase and hydrolase and reductase action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez PJ, Vogel TM (1991) Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol 57:2981–2985

    PubMed  CAS  Google Scholar 

  • Bagnéris C, Cammack R, Mason JR (2005) Subtle difference between benzene and toluene dioxygenase of Pseudomonas putida. Appl Environ Microbiol 71:1570–1580

    Article  PubMed  Google Scholar 

  • Champagne PP, Ramsay JA (2005) Contribution of manganese peroxidase and laccase to dye decolorization by Trametes versicolor. Appl Microbiol Biotechnol 69:276–285

    Article  PubMed  CAS  Google Scholar 

  • Chen H (2006) Recent advances in azo dye degradaing enzyme research. Curr Protein Pept Sci 7:101–111

    Article  PubMed  CAS  Google Scholar 

  • Chivukla M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    Google Scholar 

  • Delee W, O’Neill C, Hawkes FR, Pinheiro HM (1998) Anaerobic treatment of textile effluents: a review. J Chem Technol Biotechnol 73:323–335

    Article  CAS  Google Scholar 

  • Drista V, Rigas F, Natsis K, Marchant R (2007) Characterization of a fungal strain isolated from a polyphenol polluted site. Biores Technol 98:1741–1747

    Article  Google Scholar 

  • Gavril M, Hodson PV (2007) Decoloration of amaranth by the white-rot fungus Trametes versicolor. Part II verification study. Can J Microbiol 53:327–336

    Article  PubMed  CAS  Google Scholar 

  • Gavril M, Hodson PV, Mclellan J (2007) Decoloration of amaranth by the white-rot fungus Trametes versicolor. Part I statistical analysis. Can J Microbiol 53:313–326

    Article  PubMed  CAS  Google Scholar 

  • Goszczynski S, Paszczynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces cheomofuscus. J Bacteriol 176:1339–1347

    PubMed  CAS  Google Scholar 

  • Hong Y, Gan J, Xu Z, Mo C, Xu M, Sun G (2007) Reduction and partial degradation mechanisms of naphtylamine sulfonic azo dye amaranth Shewanella decolorationis S12. Appl Microbial Biotechnol 75:647–654

    Article  CAS  Google Scholar 

  • Jindorová E, Chocová M, Demnerová K, Brenner V (2002) Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiol 47:83–93

    Article  Google Scholar 

  • Kim SJ, Shoda M (1998) Decolorization of molasses by a new isolate of Geotrichum candidum in a jar fermenter. Biotechnol Techn 12:497–499

    Article  CAS  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    PubMed  CAS  Google Scholar 

  • Kim SJ, Ishikawa K, Hirai M, Shoda M (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79:601–607

    Article  CAS  Google Scholar 

  • Kudlich M, Hetheridge MJ, Knackmuss H, Stolz A (1999) Autooxidation reactions of different o-aminohydroxynaphthalenes that are formed during the anaerobicreduction of sulfonated azo dyes. Environ Sci Technol 33:896–901

    Article  CAS  Google Scholar 

  • Mohanty S, Dafale N, Rao NN (2006) Microbial decolorization of reactive black 5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge. Biodegradation 17:403–413

    Article  PubMed  CAS  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W (1999) Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  PubMed  CAS  Google Scholar 

  • Shintani N, Sugano Y, Shoda M (2002) Decolorization of kraft pulp bleaching effluent by a newly isolated fungus Geotrichum candidum Dec 1. J Wood Sci 48:402–408

    Article  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  PubMed  CAS  Google Scholar 

  • Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403

    Article  PubMed  CAS  Google Scholar 

  • Sugano Y, Nakano R, Sasaki K, Shoda M (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66:1754–1758

    Google Scholar 

  • Sugano Y, Matsushima Y, Shoda M (2006) Complete decolorization of the anthraquinone dye Reactive blue 5 by the concerted action of two peroxidases from Thanatephorus cucumeris Dec 1. Appl Microbiol Biotechnol 73:862–871

    Article  PubMed  CAS  Google Scholar 

  • Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: Asp171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658

    Article  PubMed  CAS  Google Scholar 

  • Sugano Y, Matsushima Y, Tsuchiya K, Aoki H, Hirai M, Shoda M (2009) Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation 20:433–440

    Article  PubMed  CAS  Google Scholar 

  • Sumathi S, Manju BS (2001) Fungal mediated decolorization of media containing procion dyes. Water Sci Technol 43:285–290

    PubMed  CAS  Google Scholar 

  • Takahashi H, Hashimoto Y (2001) Formaldehyde-mediated modification of deoxyguanosine with amines: one pot cyclization as a molecular model for genotoxicity. Bioorg Med Chem Lett 11:729–731

    Article  PubMed  CAS  Google Scholar 

  • Tauber MM, Guebitz GM, Rehorek A (2005) Degradation of azo dyes by laccase and ultrasound treatment. Appl Environ Microbiol 71:2600–2607

    Article  PubMed  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Zimmermann W (1993) Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett 107:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank professor Angel T. Martínez for the valuable suggestion that strain Dec 1 should be reclassified.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sugano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomi, N., Yoshida, S., Matsumoto, K. et al. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products. Biodegradation 22, 1239–1245 (2011). https://doi.org/10.1007/s10532-011-9478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9478-9

Keywords

Navigation