Skip to main content

Advertisement

Log in

Critical evaluation of solid waste sample processing for DNA-based microbial community analysis

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Landfills represent a unique microbial ecosystem and play a significant role in global biogeochemical processes. The study of complex ecosystems such as landfills using DNA-based techniques can be advantageous since they allow for analysis of uncultured organisms and offer higher resolution in measuring demographic and metabolic (functional) diversity. However, sample acquisition and processing from refuse is challenging due to material heterogeneity. Decomposed refuse was used to evaluate the effect of seven sample processing methods on Bacteria and Archaea community structure using T-RFLP. Bias was assessed using measured richness and by comparing community structure using multi-dimensional scaling (MDS). Generally, direct methods were found to be most biased while indirect methods (i.e., removal of cellular material from the refuse matrix before DNA extraction) were least biased. An indirect method using PO4 buffer gave consistently high bacterial and archaeal richness and also resulted in 28 and 34% recovery of R. albus and M. formicicum spiked into refuse, respectively. However, the highest recovery of less abundant T-RFs was achieved using multiple processing methods. Results indicate differences in measured T-RF diversity from studies of landfill ecosystems could be caused by methodological (i.e., processing method) variation rather than refuse heterogeneity or true divergence in community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdo Z, Schuette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938

    Article  PubMed  Google Scholar 

  • Anderson KL, Lebepe-Mazur S (2003) Comparison of rapid methods for the extraction of bacterial DNA from colonic and caecal lumen contents of the pig. J Appl Microbiol 94:988–993

    Article  CAS  PubMed  Google Scholar 

  • Banning N, Brock F, Fry JC, Parkes RJ, Hornibrook ERC, Weightman AJ (2005) Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ Microbiol 7:947–960

    Article  CAS  PubMed  Google Scholar 

  • Barlaz MA, Schaefer DM, Ham RK (1989a) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55:55–65

    CAS  PubMed  Google Scholar 

  • Barlaz MA, Schaefer DM, Ham RK (1989b) Effects of prechilling and sequential washing on enumeration of microorganisms from refuse. Appl Environ Microbiol 55:50–54

    CAS  PubMed  Google Scholar 

  • Barsuhn K, Chester ST, Leedle JAZ (1988) Invitro detachment of bacteria from ruminal digesta by buffered sodium oleate solutions. Curr Microbiol 16:337–341

    Article  CAS  Google Scholar 

  • Bio-Rad (2003) Amplification: MyiQ and iQ5 real-time PCR systems. Bulletin 5462, Revision A

  • Blackwood CB, Marsh T, Kim SH, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69:926–932

    Article  CAS  PubMed  Google Scholar 

  • Bockelmann U, Szewzyk U, Grohmann E (2003) A new enzymatic method for the detachment of particle associated soil bacteria. J Microbiol Methods 55:201–211

    Article  CAS  PubMed  Google Scholar 

  • Burgmann H, Pesaro M, Widmer F, Zeyer J (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45:7–20

    Article  CAS  PubMed  Google Scholar 

  • Calli B, Girgin E (2005) Microbial analysis of leachate using fluorescent in situ hybridization (fish) technique to evaluate the landfill stability. Fresenius Environ Bull 14:737–745

    CAS  Google Scholar 

  • Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Chen AC, Imachi H, Sekiguchi Y, Ohashi A, Harada H (2003a) Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol Lett 25:719–724

    Article  CAS  PubMed  Google Scholar 

  • Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003b) Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotechnol Lett 25:1563–1569

    Article  CAS  PubMed  Google Scholar 

  • Cheng KJ, Kudo H, Duncan SH, Mesbah A, Stewart CS, Bernalier A, Fonty G, Costerton JW (1991) Prevention of fungal colonization and digestion of cellulose by the addition of methylcellulose. Can J Microbiol 37:484–487

    Article  CAS  PubMed  Google Scholar 

  • Corinaldesi C, Danovaro R, Dell’Anno A (2005) Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Appl Environ Microbiol 71:46–50

    Article  CAS  PubMed  Google Scholar 

  • Costa JLD, de Oliveira VC (2003) Enhancement of soil DNA extraction by the use of a hand held mixer. Braz J Microbiol 34:311–312

    Article  Google Scholar 

  • Courtois S, Frostegard A, Goransson P, Depret G, Jeannin P, Simonet P (2001) Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol 3:431–439

    Article  CAS  PubMed  Google Scholar 

  • Craig WM, Broderick GA, Ricker DB (1987) Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J Nutr 117:56–62

    CAS  PubMed  Google Scholar 

  • Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30:983–993

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Duarte GF, Rosado AS, Seldin L, Keijzer-Wolters AC, van Elsas JD (1998) Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community. J Microbiol Methods 32:21–29

    Article  CAS  Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197

    Article  CAS  PubMed  Google Scholar 

  • Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    Article  CAS  PubMed  Google Scholar 

  • Faegri A, Torsvik VL, Goksoyr J (1977) Bacterial and fungal activities in soil—separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 9:105–112

    Article  Google Scholar 

  • Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220

    Article  CAS  PubMed  Google Scholar 

  • Fortin N, Beaumier D, Lee K, Greer CW (2004) Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Methods 56:181–191

    Article  CAS  PubMed  Google Scholar 

  • Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    CAS  PubMed  Google Scholar 

  • Fus MM, Szteyn J, Wiszniewska A, Herman L (2003) Comparison of three methods of releasing DNA from Mycobacterium avium subsp. Paratuberculosis cells. Bull Vet Inst Pulawy 47:107–112

    Google Scholar 

  • Gabor EM, de Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163

    Article  CAS  PubMed  Google Scholar 

  • Grubb JA, Dehority BA (1976) Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods. Appl Environ Microbiol 31:262–267

    CAS  PubMed  Google Scholar 

  • Hartmann M, Widmer F (2006) Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Widmer F (2008) Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol Ecol 63:249–260

    Article  CAS  PubMed  Google Scholar 

  • Huang LN, Chen YQ, Zhou H, Luo S, Lan CY, Qu LH (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177

    Article  CAS  PubMed  Google Scholar 

  • Huang LN, Zhou H, Zhu S, Qu LH (2004) Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbiol Ecol 50:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hull RM, Krogmann U, Strom PF (2005) Composition and characteristics of excavated materials from a New Jersey landfill. J Environ Eng ASCE 131:478–490

    Article  CAS  Google Scholar 

  • Jacobsen CS, Rasmussen OF (1992) Development and application of a new method to extract bacterial-DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol 58:2458–2462

    CAS  PubMed  Google Scholar 

  • Keith JE, Boyer JG, de los Reyes FL (2005) Changes in the rRNA levels of specific microbial groups in activated sludge during sample handling and storage. Lett Appl Microbiol 41:208–215

    Article  CAS  PubMed  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) RRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Krause DO, Smith WJ, McSweeney CS (2001) Extraction of microbial DNA from rumen contents containing plant tannins. Biotechniques 31:294–298

    CAS  PubMed  Google Scholar 

  • Kudo H, Cheng KJ, Costerton JW (1987) Electron-microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can J Microbiol 33:267–272

    Article  CAS  PubMed  Google Scholar 

  • Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64:2463–2472

    CAS  PubMed  Google Scholar 

  • LaMontagne MG, Michel FC, Holden PA, Reddy CA (2002) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods 49:255–264

    Article  CAS  PubMed  Google Scholar 

  • Leedle JAZ, Butine TJ (1987) Enumeration of cellulolytic anaerobic-bacteria from the bovine rumen—comparison of 3 methods. Curr Microbiol 15:77–79

    Article  Google Scholar 

  • Leedle JAZ, Barsuhn K, Butine TJ (1987) Comparison of treatments for the in vitro detachment of cellulolytic bacteria from ruminal digesta samples. Curr Microbiol 15:129–131

    Article  Google Scholar 

  • Lehman RM, O’Connell SP (2002) Comparison of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium columns. Appl Environ Microbiol 68:1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Luna GM, Dell’Anno A, Danovaro R (2006) DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environ Microbiol 8:308–320

    Article  CAS  PubMed  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd., Malden

    Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  CAS  PubMed  Google Scholar 

  • Martin-Orue SM, Balcells J, Zakraoui F, Castrillo C (1998) Quantification and chemical composition of mixed bacteria harvested from solid fractions of rumen digesta, effect of detachment procedure. Anim Feed Sci Technol 71:269–282

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ, Hongxue Z, Bryant MP (1986) Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol 51:201–202

    CAS  PubMed  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    CAS  PubMed  Google Scholar 

  • Minato H, Suto T (1978) Technique for fractionation of bacteria in rumen microbial ecosystem. 2. Attachment of bacteria isolated from bovine rumen to cellulose powder invitro and elution of bacteria attached therefrom. J Gen Appl Microbiol 24:1–16

    Article  Google Scholar 

  • Minato H, Suto T (1981) Technique for fractionation of bacteria in rumen microbial ecosystem. 4. Attachment of rumen bacteria to cellulose powder and elution of bacteria attached to it. J Gen Appl Microbiol 27:21–31

    Article  Google Scholar 

  • Mygind T, Ostergaard L, Birkelund S, Lindholt JS, Christiansen G (2003) Evaluation of five DNA extraction methods for purification of DNA from atherosclerotic tissue and estimation of prevalence of Chlamydia pneumoniae in tissue from a Danish population undergoing vascular repair. BMC Microbiol 3:19

    Article  PubMed  Google Scholar 

  • Niemi RM, Heiskanen I, Wallenius K, Lindstrom K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45:155–165

    Article  Google Scholar 

  • Olubobokun JA, Craig WM, Pond KR (1987) Effect of microbial-contamination on rumen in situ forage digestibility measurements. Ph.D. Dissertation, Louisiana State University, Baton Rouge

  • Price GA, Barlaz MA, Hater GR (2003) Nitrogen management in bioreactor landfills. Waste Manag 23:675–688

    Article  CAS  PubMed  Google Scholar 

  • Ranilla MJ, Carro MD (2003) Diet and procedures used to detach particle-associated microbes from ruminal digesta influence chemical composition of microbes and estimation of microbial growth in Rusitec fermenters. J Anim Sci 81:537–544

    CAS  PubMed  Google Scholar 

  • Ranjard L, Poly F, Combrisson J, Richaume A, Nazaret S (1998) A single procedure to recover DNA from the surface or inside aggregates and in various size fractions of soil suitable for PCR-based assays of bacterial communities. Eur J Soil Biol 34:89–97

    Article  CAS  Google Scholar 

  • Rasmussen MA, White BA, Hespell RB (1989) Improved assay for quantitating adherence of ruminal bacteria to cellulose. Appl Environ Microbiol 55:2089–2091

    CAS  PubMed  Google Scholar 

  • Rees GN, Baldwin DS, Watson GO, Perryman S, Nielsen DL (2004) Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 86:339–347

    Article  Google Scholar 

  • Reilly K, Attwood GT (1998) Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl Environ Microbiol 64:907–913

    CAS  PubMed  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TA, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (1998) Primer 3. http://www-genome.wi.mit.edu/genome_software/other/primer3.html. Accessed 10/5/2005

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanin FD, Knappe DRU, Barlaz MA (2000) The fate of toluene, acetone and 1,2-dichloroethane in a laboratory-scale simulated landfill. Water Res 34:3063–3074

    Article  CAS  Google Scholar 

  • Seaby RM, Henderson PA (2007) Community analysis package version 4. Pisces Conservation Ltd., Lymington

    Google Scholar 

  • Sessitsch A, Gyamfi S, Stralis-Pavese N, Weilharter A, Pfeifer U (2002) RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols. J Microbiol Methods 51:171–179

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, John SJ, Damgaard DM, McAllister TA (2003) Extraction of PCR-quality plant and microbial DNA from total rumen contents. Biotechniques 34:92–97

    CAS  PubMed  Google Scholar 

  • Stach JEM, Bathe S, Clapp JP, Burns RG (2001) PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol Ecol 36:139–151

    Article  CAS  PubMed  Google Scholar 

  • Staley BF, Xu F, Cowie SJ, Barlaz MA, Hater GR (2006) Release of trace organic compounds during the decomposition of municipal solid waste components. Environ Sci Technol 40:5984–5991

    Article  CAS  PubMed  Google Scholar 

  • Steffan RJ, Goksoyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54:2908–2915

    CAS  PubMed  Google Scholar 

  • Tien CC, Chao CC, Chao WL (1999) Methods for DNA extraction from various soils: a comparison. J Appl Microbiol 86:937–943

    Article  CAS  Google Scholar 

  • USEPA (2005) Municipal solid waste, generation, recycling, and disposal in the United States; facts and figures for 2003. Agency USEPA, Washington, DC

  • Uz I, Rasche ME, Townsend T, Ogram AV, Lindner AS (2003) Characterization of methanogenic and methanotrophic assemblages in landfill samples. Proc R Soc Lond B Biol Sci 270:S202–S205

    Article  Google Scholar 

  • van Elsas JD, Duarte GF, Rosado AS, Smalla K (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods 32:133–154

    Article  Google Scholar 

  • Volossiouk T, Robb EJ, Nazar RN (1995) Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol 61:3972–3976

    CAS  PubMed  Google Scholar 

  • Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55:155–164

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse NL, Olson VM, Schwab CG, Chesbro WR, Cunningham KD, Lykos T (1994) Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids. J Anim Sci 72:1335–1343

    CAS  PubMed  Google Scholar 

  • Wikstrom P, Wiklund A, Andersson AC, Forsman M (1996) DNA recovery and PCR quantification of catechol 2,3-dioxygmase genes from different soil types. J Biotechnol 52:107–120

    Article  CAS  PubMed  Google Scholar 

  • Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  Google Scholar 

  • Zipper H, Buta C, Lammle K, Brunner H, Bernhagen J, Vitzthum F (2003) Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments. Nucleic Acids Res 31:e39

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Waste Management, Inc. We would like to thank Dr. Jose Barcena and the N.C. State University Biotechnology Training and Education Center for use of the real-time PCR machine, Dr. Stefan Franzen (N.C. State Chemistry Dept.) for use of the fluorometer and Dr. Kenneth Pollock (N.C. State Zoology Dept.) for his kind review of the approach used to measure bias, and Xia He for help with statistical analysis. Bryan Staley’s work was partially funded through a scholarship from the Environmental Research & Education Foundation and a fellowship from N.C. Beautiful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan F. Staley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staley, B.F., Saikaly, P.E., de los Reyes, F.L. et al. Critical evaluation of solid waste sample processing for DNA-based microbial community analysis. Biodegradation 22, 189–204 (2011). https://doi.org/10.1007/s10532-010-9387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9387-3

Keywords

Navigation