Skip to main content
Log in

Quinoline biodegradation and its nitrogen transformation pathway by a Pseudomonas sp. strain

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A Pseudomonas sp. strain, which can utilize quinoline as its sole carbon, nitrogen and energy source, was isolated from activated sludge in a coking wastewater treatment plant. Quinoline can be degraded via the 8-hydroxycoumarin pathway. We quantified the first two organic intermediates of the biodegradation, 2-hydroxyquinoline and 2,8-dihydroxyquinoline. We tracked the transformation of the nitrogen in quinoline in two media containing different C/N ratios. At least 40.4% of the nitrogen was finally transformed into ammonium when quinoline was the sole C and N source. But addition of an external carbon source like glucose promoted the transformation of N from NH3 into NO3 , NO2 , and then to N2. The product analysis and gene characteristics indicated that the isolate accomplished heterotrophic nitrification and aerobic denitrification simultaneously. The study also demonstrated that quinoline and its metabolic products can be eliminated if the C/N ratio is properly controlled in the treatment of quinoline-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • State Environmental Protection Administration of China (1989) Monitoring and analysis method of water and wastewater. China Environmental Science Press, Beijing (In Chinese)

    Google Scholar 

  • Aislabie J, Bej AK, Hurst H, Rothenburger S, Atlas RM (1990) Microbial degradation of quinoline and methylquinolines. Appl Environ Microbiol 56(2):345–351

    CAS  PubMed  Google Scholar 

  • Arai H, Mizutani M, Igarashi Y (2003) Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa. Microbiology-SGM 149:29–36

    Article  CAS  Google Scholar 

  • Bläse M, Bruntner C, Tshisuaka B, Fetzner S, Lingens F (1996) Cloning, expression, and sequence analysis of the three genes encoding quinoline 2-oxidoreductase, a molybdenum-containing hydroxylase from Pseudomonas putida 86. J Biol Chem 271(38):23068–23079

    Article  PubMed  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel KP (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24(5):673–690

    Article  CAS  PubMed  Google Scholar 

  • Brockman FJ, Denovan BA, Hicks RJ, Fredrickson JK (1989) Isolation and characterization of quinoline-degrading bacteria from subsurface sediments. Appl Environ Microbiol 55(4):1029–1032

    CAS  PubMed  Google Scholar 

  • Carl B, Fetzner S (2005) Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS. Appl Environ Microbiol 71(12):8618–8626

    Article  CAS  PubMed  Google Scholar 

  • Carl B, Arnold A, Hauer B, Fetzner S (2004) Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. Gene 331:177–188

    Article  CAS  PubMed  Google Scholar 

  • Chen FZ, Cui MC, Fu JM, Sheng GY, Sun GP, Xu MY (2003) Biodegradation of quinoline by freely suspended and immobilized cells of Comamonas sp. strain Q10. J Gen Appl Microbiol 49(2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Crossman LC, Moir JWB, Enticknap JJ, Richardson DJ, Spiro S (1997) Heterologous expression of heterotrophic nitrification genes. Microbiology-UK 143:3775–3783

    Article  CAS  Google Scholar 

  • Cui MC, Chen FZ, Fu JM, Sheng GY, Sun GP (2004) Microbial metabolism of quinoline by Comamonas sp. World J Microbiol Biotechnol 20(6):539–543

    Article  CAS  Google Scholar 

  • Cutruzzola F, Brown K, Wilson EK, Bellelli A, Arese M, Tegoni M, Cambillau C, Brunori M (2001) The nitrite reductase from Pseudomonas aeruginosa: essential role of two active-site histidines in the catalytic and structural properties. P Natl Acad Sci USA 98(5):2232–2237

    Article  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49(3):237–250

    Article  CAS  Google Scholar 

  • Grant DJ, Al-Najjar TR (1976) Degradation of quinoline by a soil bacterium. Microbios 15(61–62):177–189

    CAS  PubMed  Google Scholar 

  • Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65(4):1652–1657

    CAS  PubMed  Google Scholar 

  • Jetten MSM, deBruijn P, Kuenen JG (1997) Hydroxylamine metabolism in Pseudomonas PB16: involvement of a novel hydroxylamine oxidoreductase. Antonie Van Leeuwenhoek 71(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  • Kaiser JP, Feng YC, Bollag JM (1996) Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60(3):483–498

    CAS  PubMed  Google Scholar 

  • Kilbane JJ, Ranganathan R, Cleveland L, Kayser KJ, Ribiero C, Linhares MM (2000) Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9m. Appl Environ Microbiol 66(2):688–693

    Article  CAS  PubMed  Google Scholar 

  • Licht D, Johansen SS, Arvin E, Ahring BK (1997) Transformation of indole, quinoline by Desulfobacterium indolicum (DSM 3383). Appl Microbiol Biotechnol 47(2):167–172

    Article  CAS  Google Scholar 

  • Nemergut DR, Schmidt SK (2002) Disruption of narH, narJ, and moaE inhibits heterotrophic nitrification in Pseudomonas strain M19. Appl Environ Microbiol 68(12):6462–6465

    Article  CAS  PubMed  Google Scholar 

  • O’Loughlin EJ, Kehrmeyer SR, Sims GK (1996) Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium. Int Biodeter Biodegr 38(2):107–118

    Article  Google Scholar 

  • Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Myrold DD (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69(10):5974–5982

    Article  CAS  PubMed  Google Scholar 

  • Robertson LA, Cornelisse R, Devos P, Hadioetomo R, Kuenen JG (1989) Aerobic denitrification in various heterotrophic nitrifiers. A Van Leeuw J Microb 56(4):289–299

    Article  CAS  Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68(8):3818–3829

    Article  PubMed  Google Scholar 

  • Rosche B, Tshisuaka B, Hauer B, Lingens F, Fetzner S (1997) 2-oxo-1, 2-dihydroquinoline 8-monooxygenase: Phylogenetic relationship to other multicomponent nonheme iron oxygenases. J Bacteriol 179(11):3549–3554

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Shukla OP (1986) Microbial transformation of quinoline by a Pseudomonas sp. Appl Environ Microbiol 51(6):1332–1442

    CAS  PubMed  Google Scholar 

  • Shukla OP (1989) Microbiological degradation of quinoline by Pseudomonas stutzeri: the coumarin pathway of quinoline catabolism. Microbios 59(238):47–63

    CAS  PubMed  Google Scholar 

  • Sugaya K, Nakayama O, Hinata N, Kamekura K, Ito A, Yamagiwa K, Ohkawa A (2001) Biodegradation of quinoline in crude oil. J Chem Technol Biotechnol 76(6):603–611

    Article  CAS  Google Scholar 

  • Sun QH, Bai YH, Zhao C, Xiao YN, Wen DH, Tang XY (2009) Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain. Bioresour Technol 100(21):5030–5036

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Qian C, Yang XS (2006) Biodegradation of biomass gasification wastewater by two species of Pseudomonas using immobilized cell reactor. Appl Biochem Biotechnol 128(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2003) EPA test methods. http://www.epa.gov/

  • Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol Appl 16(6):2143–2152

    Article  PubMed  Google Scholar 

  • Wang JL, Quan XC, Han LP, Qian Y, Hegemann W (2002) Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Res 36(9):2288–2296

    Article  CAS  Google Scholar 

  • Wang JL, Wu WZ, Zhao X (2004) Microbial degradation of quinoline: Kinetics study with Burkholderia pickttii. Biomed Environ Sci 17(1):21–26

    PubMed  Google Scholar 

  • Wehrfritz JM, Reilly A, Spiro S, Richardson DJ (1993) Purification of hydroxylamine oxidase from Thiosphaera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett 335(2):246–250

    Article  CAS  PubMed  Google Scholar 

  • Wehrfritz JM, Carter JP, Spiro S, Richardson DJ (1996) Hydroxylamine oxidation in heterotrophic nitrate-reducing soil bacteria and purification of a hydroxylamine-cytochrome c oxidoreductase from a Pseudomonas species. Arch Microbiol 166(6):421–424

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Yan KL, Ren DJ, Wang HX (2007) Studies on quinoline biodegradation by a white rot fungus (Pleurotus ostreatus BP) in liquid and solid state substrates. Fresen Environ Bull 16(6):632–638

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an exploration project grant from the National High-tech Research and Development Program of China (863 Program, Grant No. 2006AA06Z336) and a general Project grant from the National Natural Science Foundation of China (Grant No. 50878001). We would like to express our appreciation to Prof Yi Li and Mr Mian Xia in the Beijing Weiming Kaituo Agro-biotechnology Ltd., for assistance with the molecular biology. We also thank Prof. Iain Bruce in Zhejiang University School of Medicine for critical checking and revising the paper’s English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Wen.

Additional information

Nucleotide sequence accession number

The accession numbers of the isolates 16S rRNA gene, nirS, and nosZ on GenBank are EU266621, FJ393272 and FJ393273.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Sun, Q., Zhao, C. et al. Quinoline biodegradation and its nitrogen transformation pathway by a Pseudomonas sp. strain. Biodegradation 21, 335–344 (2010). https://doi.org/10.1007/s10532-009-9304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9304-9

Keywords

Navigation