Skip to main content
Log in

Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Bromate (BrO3 ) is a carcinogenic contaminant formed during ozonation of waters that contain trace amounts of bromide. Previous research shows that bromate can be microbially reduced to bromide using organic (i.e. acetate, glucose, ethanol) and inorganic (H2) electron-donating substrates. In this study, the reduction of bromate by a mixed microbial culture was investigated using elemental sulfur (S0) as an electron donor. In batch bioassays performed at 30°C, bromate (0.30 mM) was completely converted to bromide after 10 days and no accumulation of intermediates occurred. Bromate was also reduced in cultures supplemented with thiosulfate and hydrogen sulfide as electron donor. Our results demonstrated that S0-disproportionating microorganisms were responsible for the reduction of bromate in cultures spiked with S0 through an indirect mechanism involving microbial formation of sulfide and subsequent abiotic reduction of bromate by the biogenic sulfide. Confirmation of this mechanism is the fact that bromate was shown to undergo rapid chemical reduction by sulfide (but not S0 or thiosulfate) in abiotic experiments. Bromate concentrations above 0.30 mM inhibited sulfide formation by S0-disproportionating bacteria, leading to a decrease in the rate of bromate reduction. The results suggest that biological formation of sulfide from by S0 disproportionation could support the chemical removal of bromate without having to directly use sulfide as a reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asami M, Aizawa T, Morioka T, Nishijima W, Tabata A, Magara Y (1999) Bromate removal during transition from new granular activated carbon (GAC) to biological activated carbon (BAC). Water Res 33:2797–2804

    Article  CAS  Google Scholar 

  • Bak F, Cypionka H (1987) A novel type of energy-metabolism involving fermentation of inorganic sulfur-compounds. Nature 326:891–892

    Article  CAS  Google Scholar 

  • Balk M, van Gelder T, Weelink SA, Stams AJM (2008) (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp nov., isolated from underground gas storage. Appl Environ Microbiol 74:403–409

    Article  CAS  PubMed  Google Scholar 

  • Beristain RC, Sierra-Alvarez R, Rowlette P, Razo-Flores E, Gomez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95:1148–1157

    Article  CAS  Google Scholar 

  • Butler R, Godley A, Lytton L, Cartmell E (2005a) Bromate environmental contamination: review of impact and possible treatment. Crit Rev Environ Sci Technol 35:193–217

    Article  CAS  Google Scholar 

  • Butler R, Godley AR, Lake R, Lytton L, Cartmell E (2005b) Reduction of bromate in groundwater with an ex situ suspended growth bioreactor. Water Sci Technol 52:265–273

    CAS  PubMed  Google Scholar 

  • Davis SN, Fabryka-Martin JT, Wolfsberg LE (2004) Variations of bromide in potable ground water in the United States. Ground Water 42(6–7):902–909

    CAS  PubMed  Google Scholar 

  • Downing LS, Nerenberg R (2007) Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor. Biotechnol Bioeng 98:543–550

    Article  CAS  PubMed  Google Scholar 

  • Finster K, Liesack W, Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64:119–125

    CAS  PubMed  Google Scholar 

  • Flury M, Papritz A (1993) Bromide in the natural-environment—Occurrence and toxicity. J Environ Qual 22:747–758

    Article  CAS  Google Scholar 

  • Hietaranta M (1949) The effect of oxidizing salts on growth, acid production, and proteolytic properties of lactic acid bacteria. Sven Meieritidningen 41:75–78

    Google Scholar 

  • Hijnen WAM, Voogt R, Veenendaal HR, van der Jagt H, van der Kooij D (1995) Bromate reduction by denitrifying bacteria. Appl Environ Microbiol 61:239–244

    CAS  PubMed  Google Scholar 

  • Hijnen WAM, Jong R, van der Kooij D (1999) Bromate removal in a denitrifying bioreactor used in water treatment. Water Res 33:1049–1053

    Article  CAS  Google Scholar 

  • Jackson BE, McInerney MJ (2000) Thiosulfate disproportionation by Desulfotomaculum thermobenzoicum. Appl Environ Microbiol 66:3650–3653

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH, Schuhmann A, Bak F, Liesack W (1996) Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol 166:184–192

    Article  CAS  Google Scholar 

  • Jorgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol Ecol 13:303–312

    CAS  Google Scholar 

  • Ju XM, Field JA, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R (2007) Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol Bioeng 96:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Ju XM, Sierra-Alvarez R, Field JA, Byrnes DJ, Bentley H, Bentley R (2008) Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere 71:114–122

    Article  CAS  PubMed  Google Scholar 

  • Keith JD, Pacey GE, Cotruvo JA, Gordon G (2006a) Preliminary data on the fate of bromate ion in simulated gastric juices. Ozone-Sci Eng 28:165–170

    Article  CAS  Google Scholar 

  • Keith JD, Pacey GE, Cotruvo JA, Gordon G (2006b) Experimental results from the reaction of bromate ion with synthetic and real gastric juices. Toxicology 221:225–228

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 60:2394–2399

    CAS  PubMed  Google Scholar 

  • Nerenberg R, Rittmann BE (2004) Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci Technol 49:223–230

    CAS  PubMed  Google Scholar 

  • Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, Gomez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii. Anton Leeuwen 30:225–238

    Article  Google Scholar 

  • van Ginkel CG, Middelhuis BJ, Spijk F, Abma WR (2005a) Cometabolic reduction of bromate by a mixed culture of microorganisms using hydrogen gas in a gas-lift reactor. J Ind Microbiol Biotechnol 32:1–6

    Article  PubMed  CAS  Google Scholar 

  • van Ginkel CG, van Haperen AM, van der Togt B (2005b) Reduction of bromate to bromide coupled to acetate oxidation by anaerobic mixed microbial cultures. Water Res 39:59–64

    Article  PubMed  CAS  Google Scholar 

  • WHO (1993) World Health Organization: guidelines for drinking water quality, Genève

  • Zhang TC, Lampe DG (1999) Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments. Water Res 33:599–608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the University of Arizona Water Sustainability Program for financial support. We also would like to acknowledge support from CONACyT (A.L.-V.) and US-AID (M.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyes Sierra-Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chairez, M., Luna-Velasco, A., Field, J.A. et al. Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. Biodegradation 21, 235–244 (2010). https://doi.org/10.1007/s10532-009-9296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9296-5

Keywords

Navigation