Skip to main content
Log in

Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A novel bacterial species identified as Exiguobacterium sp. RD3 degraded the diazo dye reactive yellow 84A (50 mg l−1) within 48 h at static condition, at 30°C and pH 7. Lower salinity conditions were found to be favorable for growth and decolorization. Enzymatic activities of an H2O2 independent oxidase along with laccase and an azoreductase suggest their prominent role during the decolorization of reactive yellow 84A. Presence of an H2O2 independent oxidase in Exiguobacterium sp. RD3 was confirmed and hydrogen peroxide produced was detected by a coupled iodometric assay. Azoreductase activity was prominent in presence of cofactors NADH and NADP in mineral salt medium. Considerable depletion of COD of the dye solution during degradation of dye was indicative of conversion of complex dye into simple oxidizable products. Products of degradation were analyzed by HPLC, FTIR and GCMS. A possible product of the degradation was identified by GCMS. Degradation of dye resulted with significant reduction of phytotoxicity, confirming the environmentally safe nature of the degradation metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl Environ Microbiol 66:3357–3362. doi:10.1128/AEM.66.8.3357-3362.2000

    Article  PubMed  CAS  Google Scholar 

  • Bacchi CJ, Rattendi D, Faciane E, Yarlett N, Weiss LM, Frydman B et al (2004) Polyamine metabolism in a member of the phylum microspora (Encephalitozoon cuniculi): effects of polyamine analogues. Microbiology 150:1215–1224. doi:10.1099/mic.0.26889-0

    Article  PubMed  CAS  Google Scholar 

  • Bafana A, Sivanesan SD, Krishnamurthi K, Chakrabarti T (2007) Kinetics of decolourisation and biotransformation of direct black 38 by C. hominis and P. stutzeri. Appl Environ Microbiol 74:1145–1152. doi:10.1128/AEM.01844-07

    Article  CAS  Google Scholar 

  • Bhatt N, Patel K, Keharia H, Madamwar D (2005) Decolorization of diazo-dye reactive blue 172 by Pseudomonas aeruginosa NBAR12. J Basic Microbiol 45:407–418. doi:10.1002/jobm.200410504

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441. doi:10.1099/mic.0.27805-0

    Article  PubMed  CAS  Google Scholar 

  • Deits T, Farrance M, Kay ES, Medill L, Turner EE (1984) Purification and properties of ovoperoxidase, the enzyme responsible for hardening the fertilization membrane of the sea urchin egg. J Biol Chem 259:13525–13533

    PubMed  CAS  Google Scholar 

  • Dutta K, Bhattacharjee S, Chaudhuri B, Mukhopadhyay S (2002) Chemical oxidation of C. I. Reactive red 2 using fenton-like reactions. J Environ Monit 4:754–760. doi:10.1039/b205844h

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791. doi:10.2307/2408678

    Google Scholar 

  • Francisco J, Francisco G, Susana C, Marta P, Maria JM, Angel TM (1999) Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol 65:4458–4463

    Google Scholar 

  • Graf E, Penniston JT (1980) Method for determination of hydrogen peroxide, with its application illustrated by glucose assay. Clin Chem 26:658–660

    PubMed  CAS  Google Scholar 

  • Guivarch E, Oturan N, Oturan M (2003) Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent. Environ Chem Lett 1:165–168. doi:10.1007/s10311-003-0029-4

    Article  CAS  Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin MS (2007) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19:15–19. doi:10.1007/s10532-007-9110-1

    Article  PubMed  Google Scholar 

  • Hassan M, Hawkyard CJ (2002) Ferral-catalyzed ozonation of aqueous dyes in a bubble-column reactor. Catal Commun 3:281–286. doi:10.1016/S1566-7367(02)00121-8

    Article  CAS  Google Scholar 

  • Hatvani N, Mecs L (2001) Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochem 37:491–496. doi:10.1016/S0032-9592(01)00236-9

    Article  Google Scholar 

  • He F, Hu W, Li Y (2004) Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere 57:293–301. doi:10.1016/j.chemosphere.2004.06.036

    Article  PubMed  CAS  Google Scholar 

  • Jadhav J, Parshetti G, Kalme S, Govindwar S (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400. doi:10.1016/j.chemosphere.2006.12.087

    Article  PubMed  CAS  Google Scholar 

  • Kapich AN, Prior BA, Lundell T, Hatakka A (2005) Enhanced lignin peroxidase synthesis by Phanerochaete chrysosporium in solid state bioprocessing of a lignocellulosic substrate. J Microbiol Methods 61:261–271. doi:10.1016/j.mimet.2004.12.010

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, An JY, Kim BW (2007) Improvement of the decolorization of azo dye by anaerobic sludge bioaugmented with Desulfovibrio desulfuricans. Biotechnol Bioprocess Eng 12:222–227. doi:10.1007/BF02931096

    Article  CAS  Google Scholar 

  • Lan J, Huang X, Hu M, Liu W, Li Y, Qu Y et al (2007) Mechanistic studies on the effect of veratryl alcohol on the lignin peroxidase catalyzed oxidation of pyrogallol red in reversed micelles. Cent Eur J Chem 3:672–687. doi:10.2478/s11532-007-0032-x

    Article  Google Scholar 

  • Liu G, Zhou J, Wang J, Song Z, Qv Y (2006) Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. J Microbiol Biotechnol 22:1069–1074. doi:10.1159/000093241

    Article  CAS  Google Scholar 

  • Minussi RC, de Moraes SG, Pastore GM, Duran N (2001) Biodecolorization screening of synthetic dyes by four white-rot fungi in a solid medium: possible role of siderophores. Lett Appl Microbiol 33:21–25. doi:10.1046/j.1472-765X.2001.00943.x

    Article  PubMed  CAS  Google Scholar 

  • Mabrouk M, Yusef H (2008) Decolorization of fast red by Bacillus subtilis HM. J Appl Sci Res 4:262–269

    CAS  Google Scholar 

  • Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  • Panswad T, Anan C (1999) Specific oxygen, ammonia, and nitrate uptake rates of a biological nutrient removal process treating elevated salinity wastewater. J Bioresour Technol 70:237–243. doi:10.1016/S0960-8524(99)00041-3

    Article  CAS  Google Scholar 

  • Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    PubMed  CAS  Google Scholar 

  • Ramalho PA, Cardoso MH, Cavaco-Paulo A, Ramalho MT (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288. doi:10.1128/AEM.70.4.2279-2288.2004

    Article  PubMed  CAS  Google Scholar 

  • Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504. doi:10.1021/es010227+

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salah Uddin M, Zhou J, Qu Y, Guo J, Wang P, Zhao L (2007) Biodecolorization of azo dye acid red B under high salinity condition. Bull Environ Contam Toxicol 79:440–444. doi:10.1007/s00128-007-9260-1

    Article  PubMed  Google Scholar 

  • Selvam K, Swaminathan K, Chae KS (2003) Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World J Microbiol Biotechnol 19:591–593

    Article  CAS  Google Scholar 

  • Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation 15:275–280. doi:10.1023/B:BIOD.0000043000.18427.0a

    Article  PubMed  CAS  Google Scholar 

  • Shedbalkar U, Dhanve R, Jadhav J (2008) Biodegradation of triphynylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J Hazard Mater 157:472–479. doi:10.1016/j.jhazmat.2008.01.023

    Article  PubMed  CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999) The evaluation of white rot fungi for the decoloration of textile dyes. Enzyme Microb Technol 24:130–137. doi:10.1016/S0141-0229(98)00105-7

    Article  CAS  Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035. doi:10.1073/pnas.0404206101

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium burds. J Biol Chem 261:1687–1693

    PubMed  CAS  Google Scholar 

  • Van der Zee FP, Bouwman RH, Strik D, Lettinga G, Field JA (2001) Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol Bioeng 75:691–701. doi:10.1002/bit.10073

    Article  PubMed  Google Scholar 

  • Vyas BR, Molitoris HP (1995) Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of remazol brilliant blue R. Appl Environ Microbiol 61:3919–3927

    PubMed  CAS  Google Scholar 

  • Yu G, Wen X, Li R, Qian Y (2006) In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochem 41:1987–1993. doi:10.1016/j.procbio.2006.04.008

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Mr. Rhishikesh Dhanve is thankful to Department of Biochemistry, Shivaji University, Kolhapur for providing Departmental Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti P. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanve, R.S., Kalyani, D.C., Phugare, S.S. et al. Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye. Biodegradation 20, 245–255 (2009). https://doi.org/10.1007/s10532-008-9217-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9217-z

Keywords

Navigation