Skip to main content
Log in

Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Flow-through aquifer columns were operated for 12 weeks to evaluate the benefits of aerobic biostimulation for the bioremediation of source-zone soil contaminated with chlorobenzenes (CBs). Quantitative Polymerase Chain Reaction (qPCR) was used to measure the concentration of total bacteria (16S rRNA gene) and oxygenase genes involved in the biodegradation of aromatic compounds (i.e., toluene dioxygenase, ring hydroxylating monooxygenase, naphthalene dioxygenase, phenol hydroxylase, and biphenyl dioxygenase). Monochlorobenzene, which is much more soluble than dichlorobenzenes, was primarily removed by flushing, and biostimulation showed little benefit. In contrast, dichlorobenzene removal was primarily due to biodegradation, and the removal efficiency was much higher in oxygen-amended columns compared to a control column. To our knowledge, this is the first report that oxygen addition can enhance CB source-zone soil bioremediation. Analysis by qPCR showed that whereas the biphenyl and toluene dioxygenase biomarkers were most abundant, increases in the concentration of the phenol hydroxylase gene reflected best the higher dichlorobenzene removal due to aerobic biostimulation. This suggests that quantitative molecular microbial ecology techniques could be useful to assess CB source-zone bioremediation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CB:

Chlorobenzene

DCB:

Dichlorobenzene

DNAPL:

Dense non-aqueous phase liquid

MCB:

Monochlorobenzene

MCL:

Maximum contaminant level

MNA:

Monitored natural attenuation

qPCR:

quantitative Polymerase Chain Reaction

rRNA:

ribosomal RNA

VOC:

Volatile organic compounds

References

  • Abraham WR, Wenderoth DF, Glasser W (2005) Diversity of biphenyl degraders in a chlorobenzene polluted aquifer. Chemosphere 58:529–533

    Article  CAS  Google Scholar 

  • Adamson DT, McDade JM, Hughes JB (2003) Inoculation of DNAPL source-zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533

    Article  CAS  Google Scholar 

  • Adrian L, Szewzyk U, Wecke J, Gorisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583

    Article  CAS  Google Scholar 

  • Alfreider A, Vogt C, Babel W (2002b) Expression of chlorocatechol 1,2-dioxygenase and chlorocatechol 2,3-dioxygenase genes in chlorobenzene-contaminated subsurface samples. Appl Environ Microbiol 69:1372–1376

    Article  Google Scholar 

  • Alvarez PJJ, Illman W (2005) Bioremediation and natural attenuation of groundwater contaminants: process fundamentals and mathematical models. John Wiley & Sons

  • Balcke GU, Turunen LP, Geyer R, Wenderoth DF, Schlosser D (2004) Chlorobenzene biodegradation under consecutive aerobic–anaerobic conditions. FEMS Microbiol Ecol 49:109–120

    Article  CAS  Google Scholar 

  • Baldwin BR, Nakatsu CH, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69:3350–3358

    Article  CAS  Google Scholar 

  • Beil S, Mason JR, Timmis KN, Pieper DH (1998) Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J Bacteriol 180:5520–5528

    CAS  Google Scholar 

  • Beller HR, Kane SR, Legler TC, Alvarez PJJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36:3977–3984

    Article  CAS  Google Scholar 

  • Cope N, Hughes JB (2001) Biologically-enhanced removal of PCE from NAPL source-zones. Environ Sci Technol 35:2014–2021

    Article  CAS  Google Scholar 

  • Da Silva MLB, Alvarez PJJ (2004) Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70:4720–4726

    Article  CAS  Google Scholar 

  • Da Silva MLB, Daprato RC, Gomez DE, Hughes JB, Ward CH, Alvarez PJJ (2006) Comparison of bioaugmentation and biostimulation for the enhancement of DNAPLS source-zone bioremediation. Water Environ Res 78:2456–2465

    Article  CAS  Google Scholar 

  • Dermietzel J, Vieth A (2002) Chloroaromatics in groundwater: chances of bioremediation. Environ Geol 41:683–689

    Article  CAS  Google Scholar 

  • Futumata H, Harayama S, Watanabe K (2001) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated TCE bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    Article  CAS  Google Scholar 

  • Howard PH (1989) Handbook of environmental fate and exposure data for organic chemicals. Lewis Publishers Chelsea, MI

    Google Scholar 

  • Kao CM, Prosser J (1999) Intrinsic bioremediation of trichloroethylene and chlorobenzene: field and laboratory studies. J Hazard Mater B69:67–79

    Article  Google Scholar 

  • Kaschl A, Vogt C, Uhlig S, Nijenhuis I, Weiss H, Kastner M, Richnow HH (2005) Isotopic fractionation indicates anaerobic monochlorobenzene biodegradation. Environ Toxicol Chem 24:1315–1324

    Article  CAS  Google Scholar 

  • Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431

    Article  CAS  Google Scholar 

  • Lichstein HC, Soule MH (1943) Studies of the effect of sodium azide on microbic growth and respiration: I. The effect of sodium azide on microbic growth. University of Michigan

  • Lorbeer H, Starke S, Gozan M, Tiehm A, Werner P (2002) Bioremediation of chlorobenzene-contaminated groundwater on granular activated carbon barriers. Water, Air, Soil Pollut 2:183–193

    Article  CAS  Google Scholar 

  • McDade JM, McGuire TM, Newell CJ (2005) Analysis of DNAPL source-depletion costs at 36 field sites. Remediat J 15:9–18

    Article  Google Scholar 

  • McGuire TM, McDade JM, Newell CJ (2006) Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Ground Water Monit Remediat 26:73–84

    Article  CAS  Google Scholar 

  • Sleep BE, Seepersad DJ, Mo K, Heidorn CM, Hrapovic L, Morril PL, McMAster ML, Hood ED, Lebron C, Lollar BS, Major DW, Edwars EA (2006) Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633

    Article  CAS  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  CAS  Google Scholar 

  • Van der Meer JR, Werlen C, Nishino SF, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193

    Google Scholar 

  • Vogt C, Alfreider A, Lorbeer H, Ahlheim J, Feist B, Boehme O, Weiss H, Babel W, Wuensche L (2002) Two pilot plant reactors designed for the in situ bioremediation of chlorobenzene-contaminated ground water: hydrogeological and chemical characteristics and bacterial consortia. Water Air Soil Pollut Focus 2:161–170

    Google Scholar 

  • Vogt C, Alfreider A, Lorbeer H, Hoffmann D, Wuensche L, Babel W (2004) Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. J Contam Hydrol 68:121–141

    Article  CAS  Google Scholar 

  • Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation. ASM Press, Washington

    Google Scholar 

  • Wenderoth DF, Rosenbrock P, Abraham WR, Pieper DH, Hofle MG (2003) Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Micro Ecol 46:161–176

    Article  CAS  Google Scholar 

  • Zheng YR, Carr CS, Hughes JB (2001) Influence of hydraulic retention time on extent of PCE dechlorination and preliminary characterization of the enrichment culture. Bioremediat J 5:169–168

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed with private support in conjunction with facilities and resources of the Civil and Environmental Engineering Department at Rice University. The authors thank Nathan Howell for providing laboratory and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. J. Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, R.F., da Silva, M.L.B., McGuire, T.M. et al. Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation 19, 545–553 (2008). https://doi.org/10.1007/s10532-007-9160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9160-4

Keywords

Navigation