Skip to main content
Log in

Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades bisphenol A

  • Original paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Bisphenol A (2,2-bis(4-hydroxyphenyl) propane, BPA), which is used as a synthetic resin material or a plasticizer, is a pollutant that␣possesses endocrine-disrupting activity. Bioremediation of BPA is used to decrease its polluting effects, and here we report a novel bacterial strain AO1, which is able to degrade BPA. This strain was isolated using enrichment cultivation from a soil sample from a vegetable-growing field; the sample was one of 500 soil samples collected across Japan. Strain AO1 degraded 100 mg/l BPA to an undetectable level within 6 h in MYPG medium (containing malt extract, yeast extract, peptone, and glucose) and within 48 h in minimum medium containing 1% glucose at 30°C. Strain AO1 can utilize BPA as a sole source of carbon and as an energy source under aerobic conditions. The estrogenic activity of BPA in MYPG medium was ultimately reduced by strain AO1, although the activity initially increased. Taxonomical analysis showed that strain␣AO1 is closely related to Sphingomonas chlorophenolicum and S. herbicidovorans, neither of which have a capacity for BPA degradation. DNA–DNA hybridization showed that strain AO1 is a novel species of the Sphingomonas genus, and we designated AO1 as S. bisphenolicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Colborn T (1995) Environmental estrogens: Health implications for humans and wildlife. Environ Health Perspect 103:135–136

    Google Scholar 

  • Dorn PB, Chou CS, Gentempo JJ (1987) Degradation of bisphenol A in natural waters. Chemosphere 16:1501–1507

    Article  CAS  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Google Scholar 

  • Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 284:704–706

    Article  CAS  Google Scholar 

  • Hasegawa T (1985) Classification and Identification of Microorganisms (2nd edn.). Japan Scientific Society Press, Tokyo (in Japanese)

    Google Scholar 

  • Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot bacidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s Manual of Detaminative Bacteriology. (9th edn.), Williams & Wilkins, Baltimore

    Google Scholar 

  • Howdeshell KL, Hotchkiss AK, Thayer KA Vandenbergh JG, Vom Saal FS (1999) Environmental toxins: Exposure to bisphenol A advances puberty. Nature 401:763–764

    Article  CAS  Google Scholar 

  • Hucker GJ, Conn HJ (1923) Methods of Gram staining. Technical Bulletin 129, Ithaca. New York State Agricultural Experiment Station

  • Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26

    CAS  Google Scholar 

  • Iizuka H, Komagata K (1963) An attempt at grouping of the genus Pseudomonas. J Gen Appl Microbiol 9:73–82

    Google Scholar 

  • Ike M, Chen MY, Jin CS, Fujita M (2002) Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environ Toxicol 17:457–461

    Article  CAS  Google Scholar 

  • Ike M, Jin CS, Fujita M (1995) Isolation and characterization of novel bisphenol A-degrading bacterium Pseudomonas paucimobilis strain FJ-4. Japanese J Water Biol 31:203–212

    Google Scholar 

  • Ike M, Jin CS, Fujita M (2000) Biodegradation of bisphenol A in the aquatic environment. Wat Sci Technol 42:31–38

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Lobos JH, Leib TK, Su TM (1992) Biodegradation of bisphenol A and other bisphenols by a Gram-negative aerobic bacterium. Appl Environ Microbiol 58:1823–1831

    CAS  Google Scholar 

  • Nohynek LJ, Suhonen EL, Nurmiaho-Lassila EL, Hantula J, Salkinoja-Salonen M (1995) Description of four pentachlorophenol-degrading bacterial strains of Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18:527–538

    Google Scholar 

  • Ohtani Y, Shimada Y, Shiraishi F, Kozawa K (2003) Variation of estrogenic activities during the bio-degradation of bisphenol A. J Environ Chem 13:1027–1031 (in Japanese)

    CAS  Google Scholar 

  • Quinn PJ, Carter ME, Markey B, Carter GR (1994) Bacillus species. In Clinical veterinary microbiology. Mosby-Year Book, St Louis, 178–183

  • Ronen Z, Abeliovich A (2000) Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl Environ Microbiol 66:2372–2377

    Article  CAS  Google Scholar 

  • Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophy Acta 72:619–629

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) A neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Satomi M, Kimura B, Mizoi M, Sato T, Fujii T (1997) Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836

    Article  CAS  Google Scholar 

  • Sasaki M, Maki J, Oshiman K, Matsumura Y, Tsuchido T (2005) Biodegradation of bisphenol A by cells lysate from Sphingomonas sp. strain AO1. Biodegradation 16:449–459

    Article  CAS  Google Scholar 

  • Spivak J, Leib TK, Lobos JH (1994) Novel pathway for bacterial metabolism of bisphenol A. J Biol Chem 269:7323–7329

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Staples CA, Dom PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  • Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    Article  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analysis. Int J Syst Bacteriol 51:1405–1417

    CAS  Google Scholar 

  • Uchino M, Kosako Y, Uchimura T, Komagata K (2000) Emendation of Pseudomonas straminea Iizuka & Komagata 1963. Int J Syst Evol Microbiol 50:1513–1519

    Google Scholar 

  • vom Saal F, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, Parmigiani S, Welshons WV (1998) A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health 14:239–260

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of␣the genus Sphingomonas. Microbiol Immunol 34:99–119

    CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52:1485–1496

    Article  CAS  Google Scholar 

  • Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42:415–418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Akiko Oishi for her technical assistance. The authors thank Dr. Osamu Shida, R&D Department, Higeta Shoyu Co. Ltd., Chiba, Japan for physiological and biochemical characterization of strain AO1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko-ichi Oshiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshiman, Ki., Tsutsumi, Y., Nishida, T. et al. Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades bisphenol A. Biodegradation 18, 247–255 (2007). https://doi.org/10.1007/s10532-006-9059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-006-9059-5

Keywords

Navigation