Skip to main content
Log in

Himalayan arc and treeline: distribution, climate change responses and ecosystem properties

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This study adopts a twofold strategy by reviewing literature from scattered Himalayan studies (145 sites) to use meta data (i) to synthesize the ecosystem properties of treeline ecotone, treeline response to climate change and influencing biotic factors, (ii) to analyze patterns of distribution of treeline species and their elevations, and (iii) to test relationship between treeline altitude and longitude and latitude across the 2500 km wide Himalayan Arc. Himalayan treeline is highly heterogeneous with regard to (i) species composition (58 species of 10 genera), and (ii) elevation (1700 m wide range in Treeline Elevation, TLE). Apart from temperature, variation in non-climatic factors, such as livestock grazing, and topography contribute considerably to the wide elevation range in TLE. Rhododendron, Juniperus, Abies, and Betula are common Himalayan treeline genera. Treeline elevation (3200–4900 m) and it increases (i) from NW to SE (18.4 m 1°−1 longitude), (ii) from periphery (from both north and south sides) to central part of the ranges, and (iii) from north to south aspect. A shift in dominance from deciduous Betula utilis (birch) to evergreen rhododendrons is discernible from the NW to SE. Treelines in the Himalayas differ between south and north aspects in species, elevation and anthropogenic activities, such as pastoralism. Response of treeline species to climate change could vary considerably, depending upon whether warmer temperatures of pre-monsoon months are accompanied by increased precipitation of the intensify droughts. Biomass accumulation rate declines rapidly towards treelines, and its role in treeline formation needs detailed investigations. An ecosystem approach is required to improve our understanding and management of Himalayan treeline areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bader MY, van Geloof I, Rietkerk M (2007) High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol 191(1):33–45

    Article  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bharati R, Adhikari BS, Rawat GS (2012) Assessing vegetation changes in timberline ecotone of Nanda Devi National Park Uttarakhand. Int J Appl Earth Obs Geoinf 18:472–479

    Article  Google Scholar 

  • Bonanomi G, Rita A, Allevato E et al (2018) Anthropogenic and environmental factors affect the treeline position of Fagus sylvatica along the Apennines (Italy). J Biogeogr. https://doi.org/10.1111/jbi.13408

    Article  Google Scholar 

  • Dawadi B, Liang E, Tian L, Devkota LP, Yao T (2013) Pre-monsoon precipitation signal in tree rings of timberline Betula utilis in the Central Himalayas. Quat Int 283:72–77

    Article  Google Scholar 

  • Dimri AP, Dash SK (2011) Winterline climate trends in the western Himalayas. Clim Change 111:775–800

    Article  Google Scholar 

  • Dirnböck T, Grabherr G (2000) GIS assessment of vegetation and hydrological change in a high mountain catchment of the Northern Limestone Alps. Mt Res Dev 20(2):172–179

    Article  Google Scholar 

  • Donato DC (2013) Limits to upward movement of subalpine forests in a warming climate. Proc Natl Acad Sci USA 110(20):7971–7972

    Article  CAS  PubMed  Google Scholar 

  • Dortch JM, Owen LA, Haneberg WC, Caffee MW et al (2009) Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat Sci Rev 28(11–12):1037–1054

    Article  Google Scholar 

  • Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shifts of Himalayan pine in Western Himalaya India. Curr Sci 85:1135–1136

    Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at central Nepal Himalaya. Clim Past 10:1277–1290

    Article  Google Scholar 

  • Garkoti SC, Singh SP (1992) Biomass productivity and nutrient cycling in alpine Rhododendron community of Central Himalaya. Oecol Mont 2:21–32

    Google Scholar 

  • Garkoti SC, Singh SP (1994) Nutrient cycling in three Central Himalayan forests ranging from close-canopied to open-canopied tree-line forests. Arct Alp Res 26:339–348

    Article  Google Scholar 

  • Greenwood S, Jump A (2014) Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct Antarct Alp Res 46(4):829–840

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS et al (2009) Are treeline advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Article  PubMed  Google Scholar 

  • Holtmeier FK (2009) Mountain timberlines: ecology, patchiness and dynamics. Springer, Neterlands

    Book  Google Scholar 

  • Holtmeier FK, Broll G (2010) Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys Geogr 31(3):203–233

    Article  Google Scholar 

  • Immerzeel WW, Petersen LR, Pellicciotic F (2014) The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour Res 50:2212–2226

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436

    Article  Google Scholar 

  • Joshi R, Sambhav K, Singh SP (2018) Near surface temperature lapse rate for treeline environment in western Himalaya and possible impacts on ecotone vegetation. Trop Ecol 59(2):197–209

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459

    Article  PubMed  Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Körner C (2007) The use of altitude in ecological research. Trends Ecol Evol 22(11):569–574

    Article  PubMed  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel

    Book  Google Scholar 

  • Lang S (2018) Missing pieces in the story of a caterpillar fungus - Ophiocordyceps sinensis. IMA Fungus 9(2):75–77

    Article  Google Scholar 

  • Latwal A, Sah P, Sharma S (2018) A cartographic representation of a timberline, treeline and woody vegetation around a Central Himalayan summit using remote sensing method. Trop Ecol 59(2):177–186

    Google Scholar 

  • Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl 13(6):1667–1681

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marque PA, Ruffray de P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008) Mobile carbohydrates in Himalayan treeline trees I Evidence for carbon gain limitation but not for growth limitation. Tree Physiol 28(8):1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Liu GS, Peng DS, Wang G (2013) Rainfall interception in two contrasting forest types in the mount Gongga area of eastern tibet, China. Hydrol Curr Res 4:161. https://doi.org/10.4172/2157-7587.1000161

    Article  Google Scholar 

  • Loomis PF, Ruess RW, Sveinbjörnsson B, Kielland K (2006) Nitrogen cycling at treeline: latitudinal and elevational patterns across a boreal landscape. Ecoscience 13(4):544–556

    Article  Google Scholar 

  • Macias-Fauria M, Johnson EA (2013) Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc Natl Acad Sci USA 110(20):8117–8122

    Article  CAS  PubMed  Google Scholar 

  • Maher EL, Germino MJ, Hasselquist NJ (2005) Interactive effects of tree and herb cover on survivorship, physiology, and microclimate of conifer seedlings at the alpine- treeline ecotone. Can J For Res 35:567–574

    Article  Google Scholar 

  • McNown RW, Sullivan PF (2013) Low photosynthesis of treeline white spruce is associated with limited soil nitrogen availability in the Western Brooks Range, Alaska. Funct Ecol 27(3):672–683

    Article  Google Scholar 

  • Miehe G (1982) Vegetationsgeographische Untersuchungen im Dhaulagiri- und Annapurna-Himalaya. Dissertationes Botanicae 66(2). Vaduz

  • Miehe G, Miehe S (1994) Zur oberen Waldgrenze in tropischen Gebirgen. Phytocoenologia 24:53–110

    Article  Google Scholar 

  • Miehe G, Pendry C, Chaudhary RP (eds) (2015) Nepal: an introduction to the natural history, ecology and human environment of the Himalayas: a companion volume to the flora of Nepal. Royal Botanic Garden Edinburgh, Edinburgh

    Google Scholar 

  • Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Prog Phys Geogr 40(1):135–160

    Article  Google Scholar 

  • Nanda SA, Reshi ZA, Manzoor-Ul-Haq Lone BA, Mir SA (2018) Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop Ecol 59(2):211–224

    Google Scholar 

  • Resler LM (2006) Geomorphic controls of spatial pattern and process at alpine treeline. Prof Geogr 58:124–138

    Article  Google Scholar 

  • Richardson AD (2004) Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant Soil 260(1–2):291–299

    Article  CAS  Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Gabriele B, Keplin B (eds) Mountain ecosystems: studies in treeline ecology. Springer, Berlin, Heidelberg, pp 275–354

    Chapter  Google Scholar 

  • Schickhoff U (2011) Dynamics of mountain ecosystems. Handbook of biogeography. Sage Publication, London, pp 313–337

    Google Scholar 

  • Sharma S (2004) Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: conservation and biotechnological priorities. Curr Sci 86(12):1614–1619

    Google Scholar 

  • Shia P, Körner C, Hoch G (2006) End of season carbon supply status of woody species near the treeline in western China. Basic Appl Ecol 7(4):370–377

    Article  CAS  Google Scholar 

  • Shrestha A, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Change 11(Supplement 1):65–77

    Article  Google Scholar 

  • Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of treeline birch (Betula utilis D Don) forest in a trans-Himalayan dry valley in central Nepal. Mt Res Dev 27(3):259–267

    Article  Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2014) Recent treeline dynamics are similar between dry and mesic areas of Nepal, Central Himalaya. J Plant Ecol 8(4):347–358

    Article  Google Scholar 

  • Singh SP (2018) Research on Indian Himalayan Treeline Ecotone: an overview. Trop Ecol 59(2):163–176

    Google Scholar 

  • Singh SP, Gumber S (2018) Climate change in Himalayas: research findings and complexities. Int J Plant Environ 4(1):81–88. https://doi.org/10.18811/ijpen.v4i01.12421

    Article  Google Scholar 

  • Singh SP, Rawal RS (2017) Manual of field methods. Central Himalayan Environmental Association, Nainital, p 99

    Google Scholar 

  • Singh SP, Thadani R (2015) Complexities and controversies in himalayan research: a call for collaboration and rigor for better data. Mt Res Dev 35(4):401–409

    Article  CAS  Google Scholar 

  • Singh SP, Zobel DB, Garkoti SC, Tewari A, Negi CMS (2006) Patterns in water relations of central Himalayan trees. Trop Ecol 47(2):159–182

    Google Scholar 

  • Singh SP, Singh V, Skutsch M (2010) Rapid warming in the Himalayas: ecosystem responses and development options. Clim Dev 2:221–232

    Article  Google Scholar 

  • Singh SP, Bassignana KI, Singh KB, Sharma E (2011) Climate change in the Hindu Kush-Himalayas: the state of current knowledge. International Centre for Integrated Mountain Development (ICIMOD), Patan

    Google Scholar 

  • Singh U, Phulara M, David B, Ranhotra PS et al (2018) Static treeline of Himalayan silver fir since last several decades at Tungnath, western Himalaya. Trop Ecol 59(2):351–363

    Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–1112

    Article  PubMed  Google Scholar 

  • Srinivasan J (2006) Hottest decade: early warning or false alarm? Curr Sci 90(3):273–274

    Google Scholar 

  • Suwal MK, Shrestha KB, Guragain L, Shakya R, Shrestha K, Bhuju DR, Vetaas OR (2016) Landuse change under a warming climate facilitated upslope expansion of Himalayan Silver fir (Abies spectabilis) D. Don Species. Plant Ecol 217:993–1002

    Article  Google Scholar 

  • Tiwari A, Fan ZX, Jump AS, Li SF, Zhou ZK (2016) Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia. https://doi.org/10.1016/j.dendro.2016.01.006

    Article  Google Scholar 

  • Tomback DF, Blakeslee SC, Wagner AC, Wunder MB, Resler LM, Pyatt JC, Diaz S (2016) Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen. Ecol Evol 6(15):5144–5157

    Article  PubMed  PubMed Central  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Wangchuk K, Wangdi J (2015) Mountain pastoralism in transition: consequences of legalizing Cordyceps collection on yak farming practices in Bhutan. Pastoralism 5:4. https://doi.org/10.1186/s13570-015-0025-x

    Article  Google Scholar 

  • Wieser G, Tausz M (2007) Trees at their upper limit: treelife limitation at the alpine timberline. Springer, Dordrecht

    Book  Google Scholar 

  • Winkler D (2008) Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62(3):291–305

    Article  Google Scholar 

  • Winkler D (2009) Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability on the Tibetan Plateau and in the Himalayas. Asian Med 5(2):291–316

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2(9):663–667

    Article  Google Scholar 

  • Zhang Y, Wilmking M, Gou X (2009) Changing relationships between tree growth and climate in Northwest China. Plant Ecol. https://doi.org/10.1007/s11258-008-9478-y

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to National Mission for Himalayan Studies, Ministry of Environment, Forest & Climate Change, Govt. of India for financial assistance as Indian Himalayan Timberline Project. Ms Saakshi Chauhan and Ms Priyanka Sah are gratefully acknowledged for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Sharma.

Additional information

Communicated by M.D. Behera, S.K. Behera and S. Sharma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Sharma, S. & Dhyani, P.P. Himalayan arc and treeline: distribution, climate change responses and ecosystem properties. Biodivers Conserv 28, 1997–2016 (2019). https://doi.org/10.1007/s10531-019-01777-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01777-w

Keywords

Navigation