Skip to main content

Advertisement

Log in

Current knowledge of fungi from Neotropical montane cloud forests: distributional patterns and composition

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Montane cloud forests in the Neotropics harbor a great wealth of biological diversity and a large number of endemic species. Here, we present (i) a comprehensive data mining exercise of fungi from Neotropical montane cloud forests (NMCF), (ii) an extensive review of the current knowledge of fungal richness, distribution and composition, and (iii) a preliminary analysis of fungal endemicity in Mexican montane cloud forests. Based on a survey of literature and other sources, we assembled a database of 6349 records representing 2962 fungal species in NMCF. The computed individual-based species rarefaction curve remained non-asymptotic, and the extrapolation curve estimated an expected increment of 42% in the number of species by doubling the sampling effort. Fungal species richness was highest in NMCF from Mesoamerica, particularly from Mexico and Costa Rica. Fungi from Mesoamerica, Caribbean and South America are significantly different at diverse taxonomic levels, and there is a little overlap in the fungal species recorded from these regions. The analyses of endemicity of the Mexican dataset performed with parsimony and Bayesian methods were highly complementary. They showed the following areas of endemicity supported by the congruent distribution of fungal species: (i) two main regions in the Trans-Mexican Volcanic Belt (TMVB); (ii) a region in the southern part of Veracruz; and (iii) a region located in the eastern part of TMVB with affinities with Sierra Madre Oriental and the Chiapan-Guatemala Highlands. This last area was supported by five species of Glomeromycota and is consistent with an area of endemicity previously found in vascular plants. In this study, we provide a perspective on gaps in knowledge regarding the diversity and distribution of fungi in NMCF, and provide a full dataset of fungal records with geographical, bibliographic and taxonomic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aime MC, Brearley FQ (2012) Tropical fungal diversity: closing the gap between species estimates and species discovery. Biodivers Conserv 21:2177–2180. doi:10.1007/s10531-012-0338-7

    Article  Google Scholar 

  • Aldrich M, Billington C, Edwards M, Laidlaw R (1997) Tropical montane cloud forests: an urgent priority for conservation. UNEP-World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  • Andrade-Lima D (1982) Present-day forest refuges in Northeastern Brazil. In: Prace G (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 245–251

    Google Scholar 

  • Antonelli A, Sanmartín I (2011) Why are there so many plant species in the Neotropics? Taxon 60:403–414. doi:10.2307/41317138

    Google Scholar 

  • Ataroff M (2001) Venezuela. In: Kappelle M, Brown A (eds) Bosques Nublados del Neotrópico. INBIO, Costa Rica, pp 397–442

    Google Scholar 

  • Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463. doi:10.1111/nph.13206

    Article  CAS  PubMed  Google Scholar 

  • Baroni TJ, Franco-Molano AE, Lodge DJ, Lindner DL, Horak E, Hofstetter V (2007) Arthromyces and Blastosporella, two new genera of conidia-producing lyophylloid agarics (Agaricales, Basidiomycota) from the Neotropics. Mycol Res 111:572–580. doi:10.1016/j.mycres.2007.03.007

    Article  PubMed  Google Scholar 

  • Becerra AG, Cabello M, Chiarini F (2007) Arbuscular mycorrhizal colonization of vascular plants from the Yungas forests, Argentina. Ann For Sci 64:765–772. doi:10.1051/forest

    Article  Google Scholar 

  • Becerra AG, Cabello M, Zak MR, Bartoloni N (2009) Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina. Mycologia 101:612–621. doi:10.3852/08-176

    Article  PubMed  Google Scholar 

  • Bergsten J (2005) A review of long-branch attraction. Cladistics. doi:10.1111/j.1096-0031.2005.00059.x

    Google Scholar 

  • Bjerke JW (2003) Menegazzia subsimilis, a widespread sorediate lichen. Lichenologist 35:393–396. doi:10.1016/j.lichenologist.2003.08.001

    Article  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438. doi:10.3732/ajb.1000298

    Article  PubMed  Google Scholar 

  • Brown AD, Kappelle M (2001) Introducción a los bosques nublados del Neotrópico: una síntesis regional. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. INBio, Costa Rica, pp 25–40

    Google Scholar 

  • Bubb P, May I, Miles L, Sayer J (2004) Cloud forest agenda. UNEP-WCMC, Cambridge

    Google Scholar 

  • Churchill SP, Balslev H, Forero E, Luteyn JL (eds) (1995) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, New York

    Google Scholar 

  • Colwell R (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates

  • Colwell RK, Chao A, Gotelli NJ et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. doi:10.1093/jpe/rtr044

    Article  Google Scholar 

  • Dennis RWG (1951) Some Agaricaceae of Trinidad and Venezuela. Leucosporae: part 1. Trans Br Mycol Soc 34:411–482. doi:10.1016/S0007-1536(51)80030-5

    Article  Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Farris JS, Albert VA, Källersjö M, Limpscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124. doi:10.1111/j.1096-0031.1996.tb00196.x

    Article  Google Scholar 

  • Flores AR, Comandini O, Rinaldi A (2012) A preliminary checklist of macrofungi of Guatemala, with notes on edibility and traditional knowledge. Mycosphere 3:1–21. doi:10.5943/mycosphere/3/1/1

    Article  Google Scholar 

  • García-Sandoval R (2014) Why some clades have low bootstrap frequencies and high Bayesian posterior probabilities. Isr J Ecol Evol 60:41–44. doi:10.1080/15659801.2014.937900

    Article  Google Scholar 

  • Geml J, Pastor N, Fernandez L et al (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472. doi:10.1111/mec.12765

    Article  CAS  PubMed  Google Scholar 

  • Gentry AH (1995) Patterns of diversity and floristic composition in Neotropical montane forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, New York, pp 103–126

    Google Scholar 

  • Grubb P (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  • Guerrero PC, Durán AP, Walter HE (2011) Latitudinal and altitudinal patterns of the endemic cacti from the Atacama Desert to Mediterranean Chile. J Arid Environ 75:991–997. doi:10.1016/j.jaridenv.2011.04.036

    Article  Google Scholar 

  • Hamilton L, Juvik J, Scatena F (eds) (1995) Tropical montane cloud forests. Ecological studies 110. Springer, New York

  • Harrison LB, Larsson HCE (2015) Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst Biol 64:307–324. doi:10.1093/sysbio/syu098

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655. doi:10.1016/S0953-7562(09)80810-1

    Article  Google Scholar 

  • Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433. doi:10.1007/s10531-012-0335-x

    Article  Google Scholar 

  • Henkel TW (1999) New taxa and distribution records of Tylopilus from Dicymbe forests of Guyana. Mycologia 91:655–665

    Article  Google Scholar 

  • Henkel TW, Terborgh J, Vilgalys RJ (2002) Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima Mountains of Guyana. Mycol Res 106:515–531

    Article  Google Scholar 

  • Henkel TW, Aime MC, Mehl H, Miller SL (2006) Cantharellus pleurotoides, a new and unusual basidiomycete from Guyana. Mycol Res 110:1409–1412. doi:10.1016/j.mycres.2006.09.010

    Article  PubMed  Google Scholar 

  • Henkel TW, Smith ME, Aime MC (2010) Guyanagaster, a new wood-decaying sequestrate fungal genus related to Armillaria (Physalacriaceae, Agaricales, Basidiomycota). Am J Bot 97:1474–1484. doi:10.3732/ajb.1000097

    Article  PubMed  Google Scholar 

  • Henkel TW, Aime MC, Chin MML et al (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodivers Conserv 21:2195–2220. doi:10.1007/s10531-011-0166-1

    Article  Google Scholar 

  • Henkel TW, Obase K, Husbands D et al (2016) New Boletaceae taxa from Guyana: Binderoboletus segoi gen. and sp. nov., Guyanaporus albipodus gen. and sp. nov., Singerocomus rubriflavus gen. and sp. nov., and a new combination for Xerocomus inundabilis. Mycologia 108:157–173. doi:10.3852/15-075

    Article  PubMed  Google Scholar 

  • Hertel D, Köhler L, Rillig MC (2011) Mycorrhizal, endophytic and ecomorphological status of tree roots in the canopy of a montane rain forest. Biotropica 43:401–404. doi:10.1111/j.1744-7429.2011.00792.x

    Article  Google Scholar 

  • Higginbotham SJ, Arnold AE, Ibañez A et al (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8:e73192. doi:10.1371/journal.pone.0073192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber O (1988) Vegetacion y flora de Pantepui, Region Guayana. Acta Botanica Brasilica 1:41–52. doi:10.1590/S0102-33061987000300005

    Article  Google Scholar 

  • Huelsenbeck J, Rannala B (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53:904–913. doi:10.1080/10635150490522629

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688. doi:10.1080/10635150290102366

    Article  PubMed  Google Scholar 

  • Hughes CE, Pennington RT, Antonelli A (2013) Neotropical plant evolution: assembling the big picture. Bot J Linn Soc 171:1–18. doi:10.1111/boj.12006

    Article  Google Scholar 

  • Imbusch P (2011) Violence research in Latin American and the Caribbean: a literature review. Int J Conf Violence 5:87–154

    Google Scholar 

  • Jarvis A, Mulligan M (2010) The climate of cloud forests. In: Bruijnzeel L, Scatena F, Hamilton L (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 39–56

    Google Scholar 

  • Kainer D, Lanfear R (2015) The effects of partitioning on phylogenetic inference. Mol Biol Evol 32:1611–1627. doi:10.1093/molbev/msv026

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PG, Garibay-Orijel R, Higgins LM, Angeles-Arguiz R (2011) Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21:559–568. doi:10.1007/s00572-011-0366-2

    Article  PubMed  Google Scholar 

  • Kottke I, Beck A, Oberwinkler F et al (2004) Arbuscular endomycorrhizas are dominant in the organic soil of a Neotropical montane cloud forest. J Trop Ecol 20:125–129. doi:10.1017/S0266467403001020

    Article  Google Scholar 

  • Lawton RO, Nair US, Ray D et al (2010) Quantitative measures of immersion in cloud and the biogeography of cloud forests. Trop Mont Cloud For. doi:10.1017/CBO9780511778384.024

    Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925. doi:10.1080/106351501753462876

    Article  CAS  PubMed  Google Scholar 

  • Lodge D, Læssøe T, Aime M, Henkel T (2008) Montane and cloud forest specialists among Neotropical Xylaria species. North Am Fungi 3:193–213. doi:10.2509/naf2008.003.00713

    Article  Google Scholar 

  • Luna-Vega I, Alcántara-Ayala O, Espinosa D, Morrone JJ (1999) Historical relationships of the Mexican cloud forests: a preliminary vicariance model applying Parsimony analysis of endemicity to vascular plant taxa. J Biogeogr 26:1299–1305. doi:10.1046/j.1365-2699.1999.00361.x

    Article  Google Scholar 

  • Luna-Vega I, Morrone JJ, Alcántara-Ayala O, Espinosa D (2001) Biogeographical affinities among Neotropical cloud forests. Plant Syst Evol 228:229–239. doi:10.1007/s006060170031

    Article  Google Scholar 

  • Mastretta-Yanes A, Moreno-Letelier A, Piñero D et al (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42:1586–1600. doi:10.1111/jbi.12546

    Article  Google Scholar 

  • Matheny PB, Aime MC, Bougher NL et al (2009) Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J Biogeogr 36:577–592. doi:10.1111/j.1365-2699.2008.02055.x

    Article  Google Scholar 

  • McSweeney K, Nielsen EA, Taylor MJ et al (2014) Drug policy as conservation policy: narco-deforestation. Science 343:489–490. doi:10.1126/science.1244082

    Article  CAS  PubMed  Google Scholar 

  • Morris MH, Pérez-Pérez MA, Smith ME, Bledsoe CS (2008) Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza 18:375–383. doi:10.1007/s00572-008-0186-1

    Article  PubMed  Google Scholar 

  • Morrone JJ (1994) On the identification of areas of endemism. Syst Biol 43:438–441

    Article  Google Scholar 

  • Morrone JJ (2014) Parsimony analysis of endemicity (PAE) revisited. J Biogeogr 41:842–854. doi:10.1111/jbi.12251

    Article  Google Scholar 

  • Mueller GM, Halling RE (1995) Evidence for high diversity of Agaricales (Fungi) in Neotropical Montane Quercus forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, New York, pp 303–312

    Google Scholar 

  • Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5. doi:10.1007/s10531-006-9117-7

    Article  Google Scholar 

  • Mueller GM, Schmit JP, Leacock PR et al (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48. doi:10.1007/s10531-006-9108-8

    Article  Google Scholar 

  • Mulligan M (2010) Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. In: Bruijnzeel L, Scatena F, Hamilton L (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 14–38

    Google Scholar 

  • Mulligan M, Burke SM (2005) FIESTA: fog interception for the enhancement of streamflow in tropical areas. http://www.ambiotek.com/fiesta

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Platnick NI (1991) On areas of endemism. Aust Syst Bot 4:11–12

    Google Scholar 

  • Polme S, Bahram M, Yamanaka T et al (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249. doi:10.1111/nph.12170

    Article  CAS  PubMed  Google Scholar 

  • Rains KC, Nadkarni NM, Bledsoe CS (2003) Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257–264. doi:10.1007/s00572-003-0224-y

    Article  PubMed  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond A (2014) Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer

  • Redhead SA, Norvell LL (2013) Report of the Nomenclature Committee for Fungi 19: official repositories for fungal names. Taxon 62:173–174. doi:10.5248/110.487

    Article  Google Scholar 

  • Roberts P (2006) Caribbean heterobasidiomycetes: 2. Jamaica. Mycotaxon 96:83–107

    Google Scholar 

  • Roberts P (2008) Caribbean heterobasidiomycetes: 3. British Virgin Islands. Mycotaxon 105:137–147

    Google Scholar 

  • Ronquist F, Sanmartín I (2011) Phylogenetic methods in biogeography. Annu Rev Ecol Evol Syst 42:441–464. doi:10.1146/annurev-ecolsys-102209-144710

    Article  Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P et al (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosabal D, Burgaz AR, De la Masa R (2010) Diversity and distribution of epiphytic macrolichens on tree trunks in two slopes of the montane rainforest of Gran Piedra, Santiago de Cuba. Briologist 113:313–321. doi:10.1639/0007-2745-113.2.313

    Article  Google Scholar 

  • Rosen BR (1988) From fossils to earth history: applied historical biogeography. In: Myers AA, Giller PS (eds) Analytical biogeography. Chapman & Hall, London, pp 437–481

    Chapter  Google Scholar 

  • Rowe AR, Pringle A (2005) Morphological and molecular evidence of arbuscular mycorrhizal fungal associations in Costa Rican epiphytic bromeliads. Biotropica 37:245–250. doi:10.1111/j.1744-7429.2005.00033.x

    Article  Google Scholar 

  • Safont E, Vegas-Vilarrúbia T, Rull V et al (2016) Plant communities and environmental factors in the Guayana Highlands: monitoring for conservation under future climate change. Syst Biodivers 14:327–344. doi:10.1080/14772000.2015.1134700

    Article  Google Scholar 

  • Sánchez-González LA, Morrone JJ, Navarro-Sigüenza AG (2008) Distributional patterns of the Neotropical humid montane forest avifaunas. Biol J Linn Soc 94:175–194. doi:10.1111/j.1095-8312.2008.00979.x

    Article  Google Scholar 

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111. doi:10.1007/s10531-006-9129-3

    Article  Google Scholar 

  • Schultz J (2005) The ecozones of the world. The ecological divisions of the geosphere, 2nd edn. Springer, Berlin

    Google Scholar 

  • Singer R (1982) Hydropus (Basidiomycetes-Tricholomataceae-Myceneae). In: Lieth H, Werger MJA (eds) Flora neotropica, vol 32. The New York Botanical Garden, New York

    Google Scholar 

  • Soca-Chafre G, Rivera-Orduña FN, Hidalgo-Lara ME et al (2011) Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol 115:143–156. doi:10.1016/j.funbio.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  • Suárez JP, WeiB M, Abele A et al (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270. doi:10.1016/j.mycres.2006.08.004

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

  • Tedersoo L, Bahram M, Toots M et al (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170. doi:10.1111/j.1365-294X.2012.05602.x

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Ryberg M et al (2014) Global biogeography of the ectomycorrhizal/sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Mol Ecol 23:4168–4183. doi:10.1111/mec.12849

    Article  PubMed  Google Scholar 

  • Timdal E (2009) Krogia antillarum (Ramalinaceae), a new lichen species from the West Indies. Briologist 112:387–389

    Article  Google Scholar 

  • Van der Hammen T (1995) Global change, biodiversity, and conservation of Neotropical montane forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, New York, pp 603–608

    Google Scholar 

  • Vanderpoorten A, Rumsy FJ, Carine MA (2007) Does Macaronesia exist? Conflicting signal in the bryophyte and pteridophyte floras. Am J Bot 94:625–639. doi:10.3732/ajb.94.4.625

    Article  CAS  PubMed  Google Scholar 

  • Wartchow F (2016) Amanita viridissima (Amanitaceae, Basidiomycota), a striking new species from highlands of the semiarid region of Bahia, Brazil. Plant Ecol Evol 149:241–248. doi:10.5091/plecevo.2016.1198

    Article  Google Scholar 

  • Webster GL (1995) The panorama of the Neotropical cloud forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, New York, pp 53–77

    Google Scholar 

  • Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13:303–314. doi:10.1038/nrg3186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luke Harrison who provided valuable advice regarding the use of partitions in the context of BAE and César Antonio Ríos Muñoz who pointed out to key bibliographic references regarding BAE. MDOR was supported by a DGAPA-UNAM Postdoctoral Fellowship. This project was supported by PAPIIT-UNAM IV201015. We thank L. Pérez-Ramírez and F. Santos-Rodríguez for assistance with document gathering. We are deeply grateful to Elizabeth Arnold and two anonymous reviewers for their thorough comments and observations, which led to substantial improvements in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isolda Luna-Vega.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by David Hawksworth.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Fungal records from Neotropical montane cloud forests, including species names separated by taxonomic categories, sampling localities and references. Supplementary material 1 (XLS 2571 kb)

Online Resource 2

Incidence data matrix of fungal species and localities, and parsimony and Bayesian trees from the Mexican analyses of endemicity. Supplementary material 2 (NEX 128 kb)

Online Resource 3

Map showing the location and extent of the five main montane systems in Mexico: SMOcc, Sierra Madre Occidental; TMVB, Trans-Mexican Volcanic Belt; SMS, Sierra Madre del Sur; SMOr, Sierra Madre Oriental; CGH, Chiapan-Guatemalan Highlands. The map was redrawn from Mastretta-Yanes et al. (2015). Supplementary material 3 (JPEG 897 kb)

Online Resource 4

Area cladograms recovered from the analyses of the jackknifed matrix. Bayesian analysis of endemicity without partitions (a) and parsimony analysis of endemicity (b). The terminals represent grid-cells (expressed in latitude-longitude). Supplementary material 4 (JPEG 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Olmo-Ruiz, M., García-Sandoval, R., Alcántara-Ayala, O. et al. Current knowledge of fungi from Neotropical montane cloud forests: distributional patterns and composition. Biodivers Conserv 26, 1919–1942 (2017). https://doi.org/10.1007/s10531-017-1337-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1337-5

Keywords

Navigation