Skip to main content

Advertisement

Log in

Case study of the implications of climate change for lichen diversity and distributions

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

There is ample evidence for species distributional changes in response to recent climate change, but most studies are biased toward better known taxa. Thus, an integrated approach is needed that includes the “cryptic diversity” represented partly by lichens, which are among the most sensitive organisms to environmental change due to their physiological characteristics. The use of functional traits and ecological attributes may improve the interpretation of how species respond to climate change. Thus, we quantified the future climate change impacts on 41 lichen species distributed in the Iberian Peninsula using ensemble climatic suitability maps (derived from generalized linear and generalized additive models, and classification and regression tree analysis) and different metrics. We also determined the lichen traits/attributes that might be related to a shared response to climate change. The results indicated a loss of bioclimatic space for 75% of the species studied and an increase for 10 species, especially in Mediterranean ones. Most of the species that will lose more than 70% of their current modeled distribution area comprised big macrolichens with cyanobacteria as the photobiont, thereby indicating a great biomass loss in forests, which might affect nutrient cycles. We also found that the predicted distributions were trait-related. Smaller species, green-algae lichens, and saxicolous and epiphyte species will respond better to future climate change. The results of this type of study may help to identify the species that are most vulnerable to climate change and facilitate the development of conservation measures to avoid their decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Alam MA (2014) Growth chamber experiments on lichens. Temperature and humidity regimes rapidly shape growth rates and carbohydrate contents. Master Thesis. Norwegian University of Life Sciences

  • Allen JL, Lendemer JC (2016) Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodivers Conserv 25:555–568

    Article  Google Scholar 

  • Angert LA, Crozier LG, Rissler LE, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  PubMed  Google Scholar 

  • Aptroot A, van Herk CM (2002) Lichens and global warming. Int Lichenol Newsl 35:57–58

    Google Scholar 

  • Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146:293–298

    Article  CAS  PubMed  Google Scholar 

  • Aragón G, Otálora MAG (2004) Ecological and chorological novelties of the genus Leptogium in the Iberian Peninsula. Nova Hedwig 78:353–366

    Article  Google Scholar 

  • Aragón G, Sarrión FJ, Martínez I (2004) Epiphytic lichens on Juniperus oxycedrus in the Iberian Peninsula. Nova Hedwig 78:45–56

    Article  Google Scholar 

  • Aragón G, Otálora MAG, Martínez I (2005) New data of the genus Leptogium (ascomycetes lichenized) in the Iberian Peninsula. Nova Hedwig 80:199–226

    Article  Google Scholar 

  • Aragón G, Martínez I, Izquierdo P, Belinchón R, Escudero A (2010) Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Appl Veg Sci 13:183–194

    Article  Google Scholar 

  • Aragón G, Martínez I, García A (2012) Loss of epiphytic diversity along a latitudinal gradient in southern Europe. Sci Total Environ 426:188–195

    Article  PubMed  CAS  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Peterson T (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Araújo MB, Pearson R, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1–10

    Article  Google Scholar 

  • Asplund J, Wardle DA (2013) The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. J Ecol 101:689–700

    Article  CAS  Google Scholar 

  • Bailey SA, Haines-Young RH, Watkins C (2002) Species presence in fragmented landscapes: modelling of species requirements at the national level. Biol Conserv 108:307–316

    Article  Google Scholar 

  • Baniya CB, Rai H, Upreti DK (2014) Terricolous lichens in Himalayas: patterns of species richness along elevation gradient. In: Rai H, Upreti DK (eds) Terricolous lichens in India. Springer, New York, pp 33–52

    Chapter  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Electing pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barreno E, Vázquez VM (1981) Coelocaulon crespoae Barreno & Vázquez sp. nova (Lichenes). Notas sobre la flora liquénica de brezales españoles. Lazaroa 3:235–246

    Google Scholar 

  • Barrera-Escoda A, Gonçalves M, Guerreiro D, Cuniellera J, Baldasano JM (2014) Projections of temperature and precipitation extremes in the North-Western Mediterranean Basin by dynamical downscaling of climate scenarios at high-resolution (1971–2050). Clim Change 122:567–582

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Benito MG, Sánchez de Dios R, Sainz HO (2008) Effects of climate change on the distribution of Iberian trees species. Appl Veg Sci 11:169–178

    Article  Google Scholar 

  • Branquinho C, Matos P, Pinho P (2015) Lichens as ecological indicators to track atmospheric changes: future challenges. In: Lindenmayer D, Barton P, Pierson J (eds) Indicators and surrogates of biodiversity and environmental change. CSIRO Publishing, CRC Press, Melbourne

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Chapman & Hall, New York

    Google Scholar 

  • Bruun HH, Moen J, Virtanen R, Grytnes J-A, Oksanen L, Angerbjörn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46

    Article  Google Scholar 

  • Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 40–68

    Chapter  Google Scholar 

  • Burgaz AR, Ahti T (2009) Flora Liquenológica Ibérica. In: Cladoniaceae, Vol 4. Sociedad Española de Liquenología, SEL, Madrid

  • Burgaz AR, Martínez I (2003) Flora liquenológica ibérica. Peltigerales: lobariaceae, nephromataceae, peltigeraceae. Sociedad Española de Liquenología, SEL, Murcia

    Google Scholar 

  • Busby JR (1991) BIOCLIM a bioclimate analysis and prediction system. Plant Prot Q 6:8–9

    Google Scholar 

  • Carballal R, Paz-Bermúdez G, López de Silanes ME, Pérez Valcárcel C (2010) Flora liquenológica ibérica. Pannariaceae. Sociedad Española de Liquenología, SEL, Pontevedra

    Google Scholar 

  • Carter GM, Stolen ED, Breininger DR (2006) A rapid approach to modeling species–habitat relationships. Biol Conserv 127:237–244

    Article  Google Scholar 

  • Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Model 210:478–486

    Article  Google Scholar 

  • Chen I, Hill JK, Ohlemüller R, Roy DB et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Cogoni A, Brundu G, Zedda L (2011) Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwig 92:159–175

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8:2104–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comisión de Coordinación de Políticas de Cambio Climático (2007) El cambio climático en España. Estado de situación. Documento Resumen. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • Concostrina-Zubiri L, Pescador DS, Martínez I, Escudero A (2014a) Climate and small scale factors determine functional diversity shifts of biological soil crusts in Iberian drylands. Biodivers Conserv 23:1757–1770

    Article  Google Scholar 

  • Concostrina-Zubiri L, Martínez I, Rabasa SG, Escudero A (2014b) The influence of environmental factors on biological soil crust: from a community perspective to a species level. J Veg Sci 25:503–513

    Article  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskia NA et al (2007) Comparative cryptogam ecology, a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot London 99:987–1001

    Article  CAS  Google Scholar 

  • Costa M, Morla C, Sáinz H (eds) (2005) Los montes ibéricos, una interpretación geobotánica. Editorial Planeta, Barcelona

    Google Scholar 

  • Crespo A, Vězda A (1985) Pertusaria paramerae sp. nov., un liquen epífito de los sabinares españoles. Anales Jard Bot Madrid 41:251–255

    Google Scholar 

  • Diamond SE, Frame AM, Martin R, Buckley LB (2011) Species’ traits predict phenological responses to climate change in butterflies. Ecology 92:1005–1012

    Article  PubMed  Google Scholar 

  • Edman M, Eriksson AM, Villard MA (2008) Effects of selection cutting on the abundance and fertility of indicator lichens Lobaria pulmonaria and Lobaria quercizans. J Appl Ecol 45:26–33

    Article  Google Scholar 

  • Eldridge DJ, Rosentreter R (1999) Morphological groups, a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25

    Article  Google Scholar 

  • Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspect Plant Ecol 14:131–152

    Article  Google Scholar 

  • Ellis CJ (2013) A risk-based model of climate change threat: hazard, exposure and vulnerability in the ecology of lichen epiphytes. Botany 91:1–11

    Article  Google Scholar 

  • Ellis CJ (2015) Ancient woodland indicators signal the climate change risk for dispersal-limited species. Ecol Indic 53:106–114

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33:1643–1656

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007a) Response of British lichens to climate change scenarios, trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140:217–235

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP (2007b) Predicted response of lichen epiphyte Lecanora populicola to climate change scenarios in clean-air region of Northern Britain. Biol Conserv 135:396–404

    Article  Google Scholar 

  • Ellis CJ, Eaton S, Theodoropoulos M, Coppins BJ, Seaward MRD, Simkin S (2014) Response of epiphytic lichens to 21st Century climate change and tree disease scenarios. Biol Conserv 180:153–164

    Article  Google Scholar 

  • Escolar C, Martínez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crust in a semi-arid environment, implications for ecosystem. Philos Trans R Soc B 367:3087–3099

    Article  Google Scholar 

  • European Environment Agency (2009) Biogeographical regions in Europe. Website http://www.eea.europa.edu. Accessed 25 June 2016

  • Felicísimo AM, Muñoz J, Mateo RG, Villalba CJ (2012) Vulnerabilidad de la flora y vegetación españolas ante el cambio climático. Ecosistemas 21:1–6. doi:10.7818/ECOS.2012.21-3.01

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fos S, Deltoro VI, Calatayud A, Barreno E (1999) Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum. Lichenologist 31:375–387. doi:10.1006/lich.1999.0215

    Google Scholar 

  • Gauslaa Y, Solhaug KA (1998) The significance of thallus size for the water economy of the cyanobacterial old forest lichen Degelia plumbea. Oecologia 116:76–84

    Article  PubMed  Google Scholar 

  • Gauslaa Y, Solhaug KA (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria – interaction of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705. doi:10.1093/jxb/50.334.697

    CAS  Google Scholar 

  • Giordani P, Incerti G (2008) The influence of climate on the distribution of lichens, a case study in a borderline area (Liguria, Nw Italy). Plant Ecol 2:257–272

    Article  Google Scholar 

  • Giordani P, Brunialti G, Alleteo D (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environ Pollut 118:53–64

    Article  CAS  PubMed  Google Scholar 

  • Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420

    Article  Google Scholar 

  • Giordani P, Incerti G, Rizzi G, Nimis PL, Modenesi P (2013) Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J Veg Sci 25:778–792

    Article  Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of dessication/rehidration cycles in mosses and lichens. In: Luettge et al. (eds) Plant desiccation tolerance, Ecological studies 215. Springer, Berlin, pp 89–120

  • Guisan A, Thuiller W (2005) Predicting species distribution, offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Halici MG, Kocakaya M, Sweeney K, Fankhauser JD, Schmitt I (2010) Pertusaria paramerae (Pertusariales, Ascomycota), a species with variable secondary chemistry, and a new lichen record for Turkey. Nova Hedwig 91:223–230

    Article  Google Scholar 

  • Hamada H (1983) The effect of temperature on lichen substances in Ramalina subbreviuscula (lichens). Bot Mag Tokyo 96:121–126

    Article  CAS  Google Scholar 

  • Hastie TJ, Tibshirani R (1990) Generalised additive models. Chapman & Hall, London

    Google Scholar 

  • Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154

    Article  Google Scholar 

  • Hewitt CD (2004) Ensembles-based predictions of climate changes and their impacts. EOS Trans Am Geophys Union 85:566

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation, and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, New York

  • IPCC (2007) Climate change 2007: The scientific basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kharouba HM, McCune JL, Thuiller W, Huntley B (2013) Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models. Ecography 36:657–664

    Article  Google Scholar 

  • Lakatos M, Rascher U, Büdel B (2006) Functional characteristics of corticolous lichens in the understory of a tropical lowland. New Phytol 172:679–695

    Article  PubMed  Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens, performance differences in species with green and blue–green algae as phycobionts. Oecologia 71:104–110

    Article  CAS  PubMed  Google Scholar 

  • Lavorel S, Garnier F (2002) Predicting changes in community composition and ecosystem functioning from plant traits, revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lawrey JD (1991) Biotic interactions in lichen community development: a review. Lichenologist 23:205–214

    Article  Google Scholar 

  • Lisewski V, Ellis JC (2010) Epiphyte sensitivity to a cross-scale interaction between habitat quality and macroclimate, an opportunity for range-edge conservation. Biodivers Conserv 19:3935–3949

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distribution. Ecography 28:385–393

    Article  Google Scholar 

  • Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecol Modell 120:337–347

    Article  Google Scholar 

  • Martínez I, Burgaz AR, Vitikainen O, Escudero A (2003) Distribution pattern of the genus Peltigera Willd. Lichenologist 35:301–323

    Article  Google Scholar 

  • Martínez I, Flores T, Aragón G, Otálora MAG, Rubio-Salcedo M (2014) What factors influence the occurrence of the genus Degelia (a threatened lichen) in central Spain? Fungal Ecol 11:50–59

    Article  Google Scholar 

  • Matos P, Pinho P, Aragón G, Martínez I, Nunes A, Soares AMVM, Branquinho C (2015) Lichen traits responding to aridity. J Ecol 103:451–458

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London

    Book  Google Scholar 

  • McCune B, Dey J, Peck J, Heiman K, Will-Wolf S (1997) Regional gradients in lichen communities of the southeast United States. Bryologist 100:145–158

    Article  Google Scholar 

  • McPherson JM, Jetz W (2007) Effects of species´ ecology on the accuracy of distribution models. Ecography 30:135–151. doi:10.1111/j.2006.0906-7590.04823.x

    Google Scholar 

  • Merinero S, Hilmo O, Gauslaa Y (2014) Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecol 7:59–66

    Article  Google Scholar 

  • Met Office UK (2011) Climate:observations, projections and impacts. Spain. Met Office and the Met Office Logo, United Kingdom

    Google Scholar 

  • Milla R, Reich PB (2007) The scaling of leaf area and mass, the cost of light interception increases with leaf size. P R Soc B 274:2109–2114

    Article  Google Scholar 

  • Moreno JM (coord.) et al (2005) Principales conclusiones de la evaluación preliminar de los impactos en España por efecto del cambio climático. Oficina Española de Cambio Climático, Ministerio de Medio Ambiente, Madrid

  • Morillo C, Gómez-Campo C (2000) Conservation in Spain 1980–2000. Biol Conserv 95:165–174

    Article  Google Scholar 

  • Muñiz D, Hladún N (2011) Calicioides. Sociedad Española de Liquenología. SEL, Barcelona

    Google Scholar 

  • Muñiz D, Llop E, Hladun N (2013) Sphinctrina paramerae, a new Mediterranean lichenicolous species with non-septate spores. Lichenologist 45:137–143

    Article  Google Scholar 

  • Muñoz J, Felicísimo AM, Cabezas F, Burgaz AR, Martínez I (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144–1147

    Article  PubMed  CAS  Google Scholar 

  • Nakicenovic N, Swart R (2000) Special report on emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Nascimbene J, Marini L (2015) Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J Biogeogr 42:1222–1232

    Article  Google Scholar 

  • Nash TH III (ed) (2008) Lichen biology, 2nd edn. Cambridge University Press, London

    Google Scholar 

  • Nimis PL, Martellos S (2008) ITALIC the information system on Italian lichens version 4.0. http://dbiodbs.univ.trieste.it/italic/italic03

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Universidad Autónoma de Barcelona, Barcelona

    Google Scholar 

  • Osborne PE, Alonso JC, Bryant RG (2001) Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J Appl Ecol 38:458–471

    Article  Google Scholar 

  • Otálora MAG, Martínez I, Molina CM, Aragón G, Lutzoni F (2008) Phylogenetic relationships and taxonomy of the Leptogium lichenoides group (Collemataceae, Ascomycota) in Europe. Taxon 57:907–921

    Google Scholar 

  • Otálora MAG, Martínez I, Aragón G, Molina MC, Lutzoni F (2010) Disentangling the Collema-Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota). Mycologia 102:279–290

    Article  PubMed  CAS  Google Scholar 

  • Otálora MA, Belinchón R, Prieto M, Aragón G, Izquierdo P, Martínez I (2015) The threatened epiphytic lichen Lobaria pulmonaria in the Iberian Peninsula: genetic diversity and structure across a latitudinal gradient. Fungal Biol 119:802–811

    Article  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species, are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st CENTURY. Science 330:1496

    Article  CAS  PubMed  Google Scholar 

  • Pérez FF, Boscolo R (eds) (2010) Clima en España: pasado, presente y future. Informe de evaluación del cambio climático regional. Red Temática CLIVAR-España. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid

    Google Scholar 

  • Pinho P, Dias T, Cruz C, Sim-Tang Y, Sutton MA, Martins-Louçao MA, Maguas C, Branquinho C (2011) Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J App Ecol 48:1107–1116

    Article  CAS  Google Scholar 

  • Pisani T, Paoli L, Gaggi C, Pirintsos SA, Loppi S (2007) Effects of high temperature on epiphytic lichens: issues for consideration in a changing climate scenario. Plant Biosyst 141:164–169

    Article  Google Scholar 

  • Pöyry J, Luoto M, Heikkinen RK, Saarinen K (2008) Species traits are associated with the quality of bioclimatic models. Global Ecol Biogeogr 17:403–414

    Article  Google Scholar 

  • Prieto M, Aragón G, Martínez I (2010) The genus Catapyrenium s. lat. (Verrucariaceae) in the Iberian Peninsula and the Balearic Islands. Lichenologist 42:637–684

    Article  Google Scholar 

  • Prieto M, Martínez I, Aragón G, Gueidan C, Lutzoni F (2012) Molecular phylogeny of Heteroplacidium, Placidium and related catapyrenoid genera (Verrucariaceae, lichen-forming Ascomycota). Am J Bot 99:23–35

    Article  PubMed  Google Scholar 

  • Rai H, Khare R, Baniya CB, Upreti DK, Gupta RK (2015) Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers Conserv 24:1155–1174

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Roux C, Bricaud O, Menard T, Gueidan C, Coste C, Navarro-Rosinés P (2003a) Champignons lichénisés et lichénicoles de la France méridionale (Corse comprise): espèces nouvelles et intéressantes. Bull Soc Linn Provence 54:125–141

    Google Scholar 

  • Roux C, Signoret J, Masson D (2003b) Proposition d’une liste d’espèces de macrolichens à protéger en France. Association Française de Lichénologie, 33 pp

  • Rubio-Salcedo M, Martínez I, Carreño F, Escudero A (2013) Poor effectiveness of the Natura 2000 network protecting Mediterranean lichen species. J Nat Conserv 21:1–9

    Article  Google Scholar 

  • Seoane J, Carrascal LM (2008) Interspecific differences in population trends of Spanish birds are related to habitat and climatic preferences. Glob Ecol Biogeogr 17:111–121

    Google Scholar 

  • Shiver R, Cutler K, Doak DF (2011) Comparative demography of an epiphytic lichen, support for general life history patterns and solutions to common problems in demographic parameter estimation. Oecologia 170:137–146

    Article  Google Scholar 

  • Sillett SC, McCune B, Peck JE, Rambo TR, Ruchty A (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol Appl 10:789–799

    Article  Google Scholar 

  • Søchting U (2004) Flavoparmelia caperata, a probable indicator of increased temperatures in Denmark. Graph Scr 15:53–56

    Google Scholar 

  • Summers DM, Bryan BA, Crossman ND, Meyer WS (2012) Species vulnerability to climate change, impacts on spatial conservation priorities and species representation. Glob Change Biol 18:1365–2486

    Article  Google Scholar 

  • Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W (2003) BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT, Araújo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60

    Article  Google Scholar 

  • Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araújo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534

    Article  CAS  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with s, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vitikainen O (1994) Taxonomic revision of Peltigera (lichenized Ascomycotina) in Europe. Acta Bot Fenn 152:1–96

    Google Scholar 

  • Weisberg S (1980) Applied Linear Regression. John Wiley and Sons, New York

    Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

  • Zimmermann NE, Edwards TC, Graham CG, Pearman PB, Svenning JC (2010) New trends in species distribution modelling. Ecography 33:1–5

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees and the associate editor of this journal for their helpful comments. This research was supported by the Spanish Ministry of Education and Science (BIOFRAG, CGL2007-66066-C04-04) and partially by the Ministries of Science and Innovation (EPICON, CGL2010 -22049), and Economy (EPIDIVERSITY, CGL2013-47010-P), the Madrid Autonomous Region, and the European Union (FEDER Founding) (REMEDINAL2-CM, S2009/AMB-1783). This study was also supported by a Ph.D. Grant awarded by the Spanish Education Ministry to M. Rubio-Salcedo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Martínez.

Additional information

Communicated by Pradeep Kumar Divakar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Salcedo, M., Psomas, A., Prieto, M. et al. Case study of the implications of climate change for lichen diversity and distributions. Biodivers Conserv 26, 1121–1141 (2017). https://doi.org/10.1007/s10531-016-1289-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1289-1

Keywords

Navigation