Skip to main content

Advertisement

Log in

Sphagnum farming: the promised land for peat bog species?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Sphagnum farming is a promising approach towards sustainability in growing media production for horticulture. In this study we focus on the additional value of Sphagnum farming sites as a surrogate habitat for threatened peat bog fauna. The highly diverse arthropod groups of spiders and harvestmen were used as bioindicators to track changes in species assemblages over the first 3 years of Sphagnum farming on a site in northwestern Germany. The results were compared with simultaneously studied reference habitats of nearby bog grasslands and degraded peat bog remnants. Spider communities changed rapidly from assemblages dominated by disturbance specialists (pioneer species) in the year of artificial Sphagnum establishment to diverse assemblages with large proportions of peatland generalists in the following years. Conservation value based on rarity, Red List status, disturbance tolerance and peatland association of individual species was in the later stage of Sphagnum farming as high as in the seminatural reference sites. Species quality index as derived from rarity scores was particularly high in the first year of succession due to the occurrence of some rare disturbance specialists. Despite the fact that each succession stage has its own conservation value, we advocate long rotation cycles in Sphagnum farming to allow establishment of slowly colonizing peatland specialists. We generally recommend the establishment of Sphagnum farms on degraded peatland, as creation of this artificial habitat promotes landscape and species diversity and provides refuges for endangered species of peatland and ephemeral habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander PD, Bragg NC, Meade R, Padelopoulos G, Watts O (2008) Peat in horticulture and conservation: the UK response to a changing world. Mires Peat 3(8):1–10

    Google Scholar 

  • Andersen MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Article  Google Scholar 

  • Bauchhenss E (1990) Mitteleuropäische Xerotherm-Standorte und ihre epigäische Spinnenfauna—eine autökologische Betrachtung. Abhandlungen des naturwissenschaftlichen Vereins in Hamburg (NF) 31/32:153–162

    Google Scholar 

  • Beck J, Pfiffner L, Ballesteros-Mejia L, Blick T, Luka H (2013) Revisiting the indicator problem: can three epigean arthropod taxa inform about each other’s biodiversity? Divers Distrib 19:688–699. doi:10.1111/ddi.12021

    Article  Google Scholar 

  • Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114

    Article  CAS  PubMed  Google Scholar 

  • Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Bull Br Arachnol Soc 14:308–316

    Article  Google Scholar 

  • Blick T, Finch O-D, Harms KH, Kiechle J, Kielhorn K-H, Kreuels M, Malten A, Martin D, Muster C, Nährig D, Platen R, Rödel I, Scheidler M, Staudt A, Stumpf H, Tolke D (2015) Rote Liste und Gesamtartenliste der Spinnen (Arachnida: Araneae) Deutschlands. Naturschutz und Biologische Vielfalt (in press)

  • Blievernicht A, Irrgang S, Zander M, Ulrichs C (2011) Produktion von Torfmoosen (Sphagnum sp.) als Torfersatz im Erwerbsgartenbau. Gesunde Pflanze 4:125–131

    Article  Google Scholar 

  • Blievernicht A, Irrgang S, Zander M, Ulrichs C (2013) Sphagnum biomass—the next generation of growing media. Peatl Int 1(2013):32–35

    Google Scholar 

  • Bonte D, Vandenbroecke N, Lens L, Maelfait J-P (2003) Low prospensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc Roy Soc Lond B 270:1601–1607

    Article  Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem. Springer, New York

    Book  Google Scholar 

  • Bristowe WS (1923) Spiders found in the neighbourhood of Oxshott. Proc South Lond Entomol Nat Hist Soc 1922:1–11

    Google Scholar 

  • Buchar J, Růžička V (2002) Catalogue of spiders of the Czech Republic. Peres Publishers, Praha

    Google Scholar 

  • Buchholz S, Schröder M (2013) Diversity and ecology of spider assemblages of a Mediterranean wetland complex. J Arachnol 41:364–373

    Article  Google Scholar 

  • Caron J, Rochefort L (2013) Use of peat in growing media: state of the art on industrial and scientific efforts envisioning sustainability. Acta Hortic 982:15–22

    Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    Article  PubMed  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • De Cáceres M, Jansen F (2014) Indicspecies: studying the statistical relationship between species and groups of sites. R package version 1.7.2

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  • Desrochers A, van Duinen GA (2006) Peatland fauna. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological studies, vol 18. Springer, New York, pp 67–100

    Chapter  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Emmel M (2008) Growing ornamental plants in biomass. Acta Hortic 779:173–178

    CAS  Google Scholar 

  • Eyre MD, Luff ML, Woodward JC (2003) Beetles (Coleoptera) on brownfield sites in England: an important conservation resource? J Insect Conserv 7:223–231

    Article  Google Scholar 

  • Foster GN (1987) The use of Coleoptera records in assessing the conservation status ot wetlands. In: Luff ML (ed) Proceedings of a meeting of the agricultural environment research group ‘the use of invertebrates in site assessment for conservation’. University of Newcastle upon Tyne, Newcastle upon Tyne, pp 8–18

    Google Scholar 

  • Foster GN, Foster AP, Eyre MD, Bilton DT (1990) Classification of water beetle assemblages in arable fenland and ranking of sites in relation to conservation value. Freshw Biol 22:343–354

    Article  Google Scholar 

  • Gaudig G, Joosten H (2002) Peat moss (Sphagnum) as a renewable resource—an alternative to Sphagnum peat in horticulture. In: Schmilewski G, Rochefort L (eds) Peat in horticulture. Quality and environmental challenges. International Peat Society, Jyväskylä, pp 117–125

    Google Scholar 

  • Gaudig G, Joosten H, Kamermann D (2008) Growing growing media: promises of Sphagnum biomass. Acta Hortic 779:165–171

    CAS  Google Scholar 

  • Gaudig G, Fengler F, Krebs M, Prager A, Schulz J, Wichmann S, Joosten H (2014) Sphagnum farming in Germany—a review of progress. Mires Peat 13:1–11

    Google Scholar 

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850

    Article  Google Scholar 

  • González E, Henstra SW, Rochefort L, Bradfield GE, Poulin M (2014) Is rewetting enough to recover Sphagnum and associated peat-accumulating species in traditionally exploited bogs? Wetl Ecol Manage 22:49–62

    Article  Google Scholar 

  • Gossner MM, Fonseca CR, Pašalić E, Türke M, Lange M, Weisser WW (2014) Limitations to the use of arthropods as temperate forests indicators. Biodivers Conserv 23:945–962

    Article  Google Scholar 

  • Haase H, Balkenhol B (2015) Spiders (Araneae) as subtle indicators for successional stages in peat bogs. Wetl Ecol Manage. doi:10.1007/s11273-014-9394-y

    Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2013) iNEXT online: interpolation and extrapolation (Version 1.3.0). http://glimmer.rstudio.com/tchsieh/inext/. Accessed 18 Aug 2014

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, Saarijärvi

    Google Scholar 

  • Joosten H, Tapio-Biström ML, Tol S (eds) (2012) Peatlands—guidance for climate change mitigation by conservation and rehabilitation and sustainable use. Food and Agricultural Organization of the UN, Rome, p 110

    Google Scholar 

  • Key R (2000) Bare ground and the conservation of invertebrates. Br Wildl 11:183–191

    Google Scholar 

  • Koponen S (2002) Ground-living spiders in bogs in northern Europe. J Arachnol 30:262–267

    Article  Google Scholar 

  • Krebs M, Gaudig G, Joosten H (2012) Sphagnum farming on bog grassland in Germany—first results. In: Proceedings of the 14th International Peat Congress, Stockholm

  • Landry J, Pouliot R, Gaudig G, Wichman S, Rochefort L (2010) Sphagnum farming workshop in the Canadian Maritimes: a chance to overview the international research efforts and challenges. Peatl Int 2(2011):28–33

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Martens J (1978) Weberknechte, Opiliones – Spinnentiere, Arachnida. Tierwelt Deutschlands 64:1–464

  • Mazerolle MJ, Poulin M (2007) Persistence and colonization as measures of success in bog restoration for aquatic invertebrates: a question of detection. Freshw Biol 52:383–385

    Article  Google Scholar 

  • Mazerolle MJ, Poulin M, Lavoie C, Rochefort L, Desrochers A, Drolet B (2006) Animal and vegetation patterns in natural and man-made bog pools: implications for restoration. Freshw Biol 51:333–350

    Article  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201

    Article  Google Scholar 

  • Muster C, Meyer M, Sattler T (2014) Spatial arrangement overrules environmental factors to structure native and non-native assemblages of synanthropic harvestmen. PLoS One 9(3):e90474

    Article  PubMed Central  PubMed  Google Scholar 

  • Muster C, Blick T, Schönhofer A (2015) Rote Liste und Gesamtartenliste der Weberknechte (Arachnida: Opiliones) Deutschlands. Naturschutz und Biologische Vielfalt (in press)

  • Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2014) Araneae—spiders of Europe. http://www.araneae.unibe.ch. Accessed 14 Aug 2014

  • Oberpaur C, Puebla V, Vaccarezza F, Arévalo ME (2010) Preliminary substrate mixtures including peat moss (Sphagnum magellanicum) for vegetable crop nurseries. Cienc Investig Agrar 37:123–132

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-10

  • Peet RK, Knox RG, Case JS, Allen RB (1988) Putting things in order: the advantages of detrended correspondence analysis. Am Nat 131:924–934

    Article  Google Scholar 

  • Platen R (2004) Spider assemblages (Arachnida: Araneae) as indicators for degraded oligotrophic moors in north-east Germany. Arthropoda Selecta Special Issue No. 1. In: Proceedings of the 21st European Colloquium of Arachnology, St.-Petersburg, 4–9 August 2003, pp 249–260

  • Platen R, von Broen B, Herrmann A, Ratschker UM, Sacher P (1999) Gesamtartenliste und Rote Liste der Webspinnen, Weberknechte und Pseudoskorpione des Landes Brandenburg (Arachnida: Araneae, Opiliones, Pseudoscorpiones) mit Angaben zur Häufigkeit und Ökologie. Naturschutz und Landschaftspflege in Brandenburg 8(Supplement):1–79

    Google Scholar 

  • Poulin M, Andersen R, Rochefort L (2012) A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor Ecol 21:363–371

    Article  Google Scholar 

  • Pouliot R, Hugron S, Rochefort L (2014) Sphagnum farming: a long-term study on producing peat moss biomass sustainably. Ecol Eng 74:135–147

    Article  Google Scholar 

  • Pryke JS, Samways MJ (2012) Importance of using many taxa and having adequate controls for monitoring impacts of fire for arthropod conservation. J Insect Conserv 16:177–185

    Article  Google Scholar 

  • Puzin C, Leroy B, Pétillon J (2014) Intra- and inter-specific variation in size and habitus of two sibling spider species (Araneae: Lycosidae): taxonomic and biogeographic insights from sampling across Europe. Biol J Linn Soc 113:85–96

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 12 Nov 2013

  • Relys V, Koponen S, Dapkus D (2002) Annual differences and species turnover in peat bog spider communities. J Arachnol 30:416–424

    Article  Google Scholar 

  • Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2006) Rote Liste der gefährdeten Biotoptypen Deutschlands. Zweite fortgeschriebene Fassung 2006. Naturschutz und Biologische Vielfalt 34:1–318

    Google Scholar 

  • Roberts MJ (1998) Spinnengids. Tirion Natuur, Baarn

    Google Scholar 

  • Samu F, Szinetár C (2002) On the nature of agrobiont spiders. J Arachnol 30:389–402

    Article  Google Scholar 

  • Schikora H-B (1995) Intraspecific variation in taxonomic characters, and notes on distribution and habitats of Meioneta mossica Schikora and M. saxatilis (Blackwall), two closely related spiders from northern and central Europe (Araneae: Linyphiidae). Bull Br Arachnol Soc 10:65–74

    Google Scholar 

  • Schikora H-B (2002) Bodenlebende Spinnen als Element der Effizienzkontrolle bei Revitalisierungsvorhaben: Beispiel Rehberger Sattelmoor (Harz, Niedersachsen). Telma 32:175–190

    Google Scholar 

  • Schikora H-B (2003) Spinnen (Arachnida, Araneae) nord- und mitteleuropäischer Regenwasser moore entlang ökologischer und geographischer Gradienten. Verlag Mainz, Wissenschaftsverlag, Aachen

    Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287

    Article  Google Scholar 

  • Schmilewski G (2008) The role of peat in assuring the quality of growing media. Mires Peat 3:1–8

    Google Scholar 

  • Scott AG, Oxford GS, Selden PA (2006) Epigeic spiders as ecological indicators of conservation value for peat bog. Biol Conserv 127:420–428

    Article  Google Scholar 

  • Staudt A (2014) Nachweiskarten der Spinnentiere Deutschlands (Arachnida: Araneae, Opiliones, Pseudoscorpiones). http://www.spiderling.de/arages. Accessed 18 Aug 2014

  • Van Duinen GA, Brock AMT, Kuper JT, Leuven RSEW, Peeters TMJ, Roelofs JGM, van der Velde G, Verberk WCEP, Esselink H (2003) Do restoration measures rehabilitate fauna diversity in raised bogs? A comparative study on aquatic macroinvertebrates. Wetl Ecol Manage 11:447–459

    Article  Google Scholar 

  • Van Duinen GA, Verberk WCEP, Esselink H (2007) Persistence and recolonisation determine success of bog restoration for aquatic invertebrates: a comment on Mazerolle et al. (2006). Freshw Biol 52:381–382

  • Verberk WCEP, van Duinen GA, Brock AMT, Leuven RSEW, Siepel H, Verdonschot PFM, van der Velde G, Esselink H (2006) Importance of landscape heterogeneity for the conservation of aquatic macroinvertebrate diversity in bog landscapes. J Nat Conserv 14:78–90

    Article  Google Scholar 

  • Wijnhoven H (2009) De Nederlanske hooiwagens (Opiliones). Entomologische Tabellen (supplement bij Nederlanske Faunistische Mededelingen) 3:1–118

    Google Scholar 

  • Wijnhoven H, Schönhofer AL, Martens J (2007) An unidentified harvestman Leiobunum sp. alarmingly invading Europe (Arachnida: Opiliones). Arachnologische Mitteilungen 34:27–38

    Article  Google Scholar 

Download references

Acknowledgments

The research project “Sphagnum farming on former bog grassland” had been facilitated by the German Federal Ministry of Food and Agriculture (BMEL), the Torfwerk Moorkultur Ramsloh Werner Koch GmbH & Co. KG and the Deutsche Torfgesellschaft mbH, whose financial and in-kind support is gratefully acknowledged. We thank our project partners for the fruitful co-operation and all helpers for collecting the “spider samples”. We are grateful to Ingmar Weiss for confirming the determination of Robertus heydemanni. The constructive comments of two anonymous referees helped to improve an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Muster.

Additional information

Communicated by B. D. Hoffmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muster, C., Gaudig, G., Krebs, M. et al. Sphagnum farming: the promised land for peat bog species?. Biodivers Conserv 24, 1989–2009 (2015). https://doi.org/10.1007/s10531-015-0922-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0922-8

Keywords

Navigation