Skip to main content

Advertisement

Log in

Cyanobacteria: the bright and dark sides of a charming group

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Cyanobacteria are some of the oldest organisms known. Thanks to their photosynthetic apparatus, capable of splitting water into O2, protons, and electrons, this large and morphologically diverse group of phototrophic prokaryotes transformed Earth’s atmosphere to one suitable for aerobic metabolism and complex life. The long debated Endosymbiotic Theory attributes to cyanobacteria also a significant role in the evolution of life, as important players in plastid origin of higher plants and other photosynthetic eukaryotes. Recent molecular surveys are trying to understand how, exactly, cyanobacteria contributed to plant genome evolution. Their ancient origin and their widespread distribution have recently opened the possibility of including fossil cyanobacterial DNA into the palaeo-reconstructions of various environments and in the calibration of historical records. Cyanobacteria occur in almost every habitat on Earth and can be found in environments subject to stressful conditions, such as desert soils, glaciers, and hot springs. They are common also in urban areas, where they are involved in biodeterioration phenomena. Their great adaptability and versatility are due to a characteristic cell structure, with typical inclusions and particular envelopes. They are the most complex prokaryotes, since they are able to form filaments, colonies, and mats, and they exhibit distinctive ways of movements. To live in different environments, facing biotic and abiotic stresses, cyanobacteria produce also a large array of metabolites, which have potential applications in several fields, such as nutrition, medicine, and agriculture. They have also an important ecological role, not only as primary producers, but also because of their coexistence (often, but not exclusively, in the form of symbiosis) with other organisms to which they supply nitrogen. On the other side, cyanobacteria can have also a negative impact both on the environment and society. In particular they can release a range of toxic compounds, cyanotoxins, diverse in structure and in their effects on human and animal health. In spite of their importance, cyanobacterial identification is not always easy and the use of modern methods (e.g., molecular sequencing, cytomorphology, and ecophysiology) has led to the revision of traditional taxa and to the discovery of new ones. Currently, the most accepted method for cyanobacterial classification is a polyphasic approach, also including comparison with reference specimens. Moreover, several authors are making efforts to create a unique nomenclature system for cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboal M, Puig MA, Asencio AD (2005) Production of microcystins in calcareous Mediterranean streams: the Alharabe River, Segura River basin in south-east Spain. J Appl Phycol 17:231–243. doi:10.1007/s10811-005-2999-z

    CAS  Google Scholar 

  • Adams DG (2001) How do cyanobacteria glide? Microbiol Today 28:131–133

    Google Scholar 

  • Adams DG, Duggan PS (1999) Tansley Review No. 107. Heterocyst and akinete differentiation in cyanobacteria. New Phytol 144:3–33. doi:10.1046/j.1469-8137.1999.00505.x

    Google Scholar 

  • Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058. doi:10.1093/jxb/ern005

    CAS  PubMed  Google Scholar 

  • Adams DG, Ashworth D, Nelmes B (1999) Fibrillar array in the cell wall of a gliding filamentous cyanobacterium. J Bacteriol 181:884–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Adams DG, Bergman B, Nierzwicki-Bauer SA, Rai AN, Schüßler A (2006) Cyanobacterial-plant symbioses. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 1, 3rd edn., Symbiotic associations, biotechnology, applied microbiologySpringer, New York, pp 331–363

    Google Scholar 

  • Albertano P (2012) Cyanobacterial biofilms in monuments and caves. In: Whitton BA (ed) Ecology of cyanobacteria. II: their diversity in space and time. Springer, Dordrecht, pp 317–343. doi:10.1007/978-94-007-3855-3

    Google Scholar 

  • Allwood AC, Burch IW, Rouchy JM, Coleman M (2013) Morphological biosignatures in gypsum: diverse formation processes of messinian (≈6.0 ma) gypsum stromatolites. Astrobiology 13:870–886. doi:10.1089/ast.2013.1021

    CAS  PubMed  Google Scholar 

  • Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4:147–166. doi:10.1111/j.1472-4669.2006.00076.x

    CAS  Google Scholar 

  • Anagnostidis K, Komárek J (1990) Modern approach to the classification system of the cyanophytes. 5: stigonematales. Arch. Hydrobiol Algol Stud 59:1–73

    Google Scholar 

  • Andersson B, Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Bioenergetics 593:427–440. doi:10.1016/0005-2728(80)90078-X

    CAS  Google Scholar 

  • Azevedo SMFO, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology 181:441–446

    PubMed  Google Scholar 

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20. doi:10.1111/j.1529-8817.2006.00176.x

    Google Scholar 

  • Bardy SL, Ng SYM, Jarrell KF (2003) Prokaryotic motility structures. Microbiology 149:295–304

    CAS  PubMed  Google Scholar 

  • Benison KC, Karmanocky FJ (2014) Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology 42:615–618. doi:10.1130/G35542.1

    Google Scholar 

  • Bergman B, Carpenter EJ (1991) Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. J Phycol 27:158–165. doi:10.1111/j.0022-3646.1991.00158.x

    CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537. doi:10.1126/science.1064082

    CAS  PubMed  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164. doi:10.1016/S0923-2508(03)00029-9

    CAS  PubMed  Google Scholar 

  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–146. doi:10.3390/md20080007

  • Bhaya D (2004) Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53:745–754. doi:10.1111/j.1365-2958.2004.04160.x

    CAS  PubMed  Google Scholar 

  • Brookes JD, Ganf GG (2001) Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J Plankton Res 23:1399–1411. doi:10.1093/plankt/23.12.1399

    Google Scholar 

  • Brookes JD, Ganf GG, Green D, Whittington J (1999) The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis. J Plankton Res 21:327–341. doi:10.1093/plankt/21.2.327

    Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128:835–844

    CAS  Google Scholar 

  • Burns BP, Goh F, Allen M, Neilan BA (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6:1096–1101. doi:10.1111/j.1462-2920.2004.00651.x

    CAS  PubMed  Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229. doi:10.1126/science.276.5316.1221

    CAS  Google Scholar 

  • Cappitelli F, Salvadori O, Albanese D, Villa F, Sorlini C (2012) Cyanobacteria cause black staining of the National Museum of the American Indian Building, Washington, DC, USA. Biofouling 28:257–266. doi:10.1080/08927014.2012.671304

    CAS  PubMed  Google Scholar 

  • Carmichael WW (1997) The cyanotoxins. In: Callow JA (ed) Advances in botanical research, vol 27. Academic Press, London, pp 211–256

    Google Scholar 

  • Carmichael WW (2001) Health effects of toxin producing cyanobacteria: the ‘CyanoHABS’. Hum Ecol Risk Assess 7:1393–1407. doi:10.1080/20018091095087

    Google Scholar 

  • Carpenter EJ, Foster R (2002) Marine symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 11–18

    Google Scholar 

  • Carr NG, Whitton BA (1982) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (cyanobacteria). J Phycol 41:421–438. doi:10.1111/j.1529-8817.2005.04062.x

    CAS  Google Scholar 

  • Choi J, Chung Y, Moon Y, Kimt C, Watanabe M, Song P, Joe C, Bogorad L, Park YM (1999) Photomovement of the gliding Cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol 70:95–102. doi:10.1111/j.1751-1097.1999.tb01954.x

    CAS  PubMed  Google Scholar 

  • Chorus I (2001) Cyanotoxins: occurrence, causes, consequences. Springer, Berlin

    Google Scholar 

  • Cmiech HA, Reynolds CS, Leedale GF (1984) Seasonal periodicity, heterocyst differentiation and sporulation of planktonic Cyanophyceae in a shallow lake, with special reference to Anabaena solitaria. Br Phycol J 19:245–257. doi:10.1080/00071618400650271

    Google Scholar 

  • Codd GA (1995) Cyanobacterial toxins: occurrence, properties and biological significance. Water Sci Technol 32:149–156. doi:10.1016/0273-1223(95)00692-3

    CAS  Google Scholar 

  • Codd GA (2000) Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol Eng 16:51–60. doi:10.1016/S0925-8574(00)00089-6

    Google Scholar 

  • Cohen Y, Castenholz RW, Halvorson HO (1984) Microbial mats: stromatolites. Alan R. Liss. Inc., New York

    Google Scholar 

  • Cooper JAG, Smith AM, Arnscheidt J (2013) Contemporary stromatolite formation in high intertidal rock pools, Giant’s Causeway, Northern Ireland: preliminary observations. J Coastal Res 65:1675–1680. doi:10.2112/SI65-283.1

    Google Scholar 

  • Criscuolo A, Gribaldo S (2011) Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol 28:3019–3032. doi:10.1093/molbev/msr108

    CAS  PubMed  Google Scholar 

  • Crispim CA, Gaylarde CC, Gaylarde PM (2004) Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria. Int Biodeter Biodeg 54:121–124. doi:10.1016/j.ibiod.2004.03.001

    Google Scholar 

  • Crispim CA, Gaylarde PM, Gaylarde CC, Neilan BA (2006) Deteriogenic cyanobacteria on historic buildings in Brazil detected by culture and molecular techniques. Int Biodeter Biodeg 57:239–243. doi:10.1016/j.ibiod.2006.03.001

    CAS  Google Scholar 

  • Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538. doi:10.1038/nature12426

    CAS  PubMed  Google Scholar 

  • Dagan T, Roettger M, Stucken K et al (2013) Genomes of stigonematalean cyanobacteria (Subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 5:31–44. doi:10.1093/gbe/evs117

    PubMed Central  PubMed  Google Scholar 

  • Dasa D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energ 33:6046–6057. doi:10.1016/j.ijhydene.2008.07.098

    Google Scholar 

  • Davis WL, McKay CP (1996) Origins of life: a comparison of theories and applications to Mars. Orig Life Evol Biosph 26:61–73. doi:10.1007/BF01808160

    CAS  PubMed  Google Scholar 

  • De Figueiredo DR, Reboleira ASSP, Antunes SC, Abrantes N, Azeiteiro U, Gonçalves F, Pereira MJ (2006) The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia 568:145–157. doi:10.1007/s10750-006-0196-y

    CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175. doi:10.1111/j.1574-6976.1998.tb00365.x

    Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Google Scholar 

  • Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL, Buleon A, Haebel S, Ritte G, Steup M, Falcon LI et al (2008) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548. doi:10.1093/molbev/msm280

    CAS  PubMed  Google Scholar 

  • Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761. doi:10.1093/molbev/msn022

    CAS  PubMed  Google Scholar 

  • Di Rienzi SC, Sharon I, Wrighton KC et al (2013) The human gut and groundwater harbor nonphotosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. Life 2:e01102. doi:10.7554/eLife.01102

    Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324:55–58. doi:10.1038/324055a0

    Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YuN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175. doi:10.1073/pnas.061514798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36. doi:10.1186/1475-2859-4-36

    PubMed Central  PubMed  Google Scholar 

  • El-Shehawy R, Lugomela C, Ernst A, Bergman B (2003) Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. Microbiology 149:1139–1146. doi:10.1099/mic.0.26170-0

    CAS  PubMed  Google Scholar 

  • Engene N, Gunasekera SP, Gerwick WH, Paul VJ (2013) Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria. Appl Environ Microbiol 79:1882–1888. doi:10.1128/AEM.03793-12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Falconer IR (1998) Algal toxins and human health. In: Hrubec J (ed) Handbook of environmental chemistry, vol 5 (Part C). Springer, Berlin, pp 53–82

    Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50. doi:10.1038/nrmicro2242

    CAS  PubMed  Google Scholar 

  • Fredriksson C, Bergman B (1997) Ultrastructural characterization of cells specialised for nitrogen fixation in a non-heterocystous cyanobacterium, Trichodesmium spp. Protoplasma 197:76–85. doi:10.1007/BF01279886

    CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053. doi:10.1126/science.215.4536.1045

    CAS  PubMed  Google Scholar 

  • Gantar M, Svirčev Z (2008) Microalgae and cyanobacteria: food for thought. J Phycol 44:260–268. doi:10.1111/j.1529-8817.2008.00469.x

    Google Scholar 

  • Gao Q, García-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802. doi:10.1038/nrmicro2649

    CAS  PubMed  Google Scholar 

  • García-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291

    PubMed Central  PubMed  Google Scholar 

  • Gerwick WH, Coates RC, Engene N, Gerwick L, Grindberg RV, Jones AC, Sorrels CM (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3:277–284

    Google Scholar 

  • Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur J Phycol 34:339–348. doi:10.1080/09670269910001736402

    Google Scholar 

  • Golubic S, Abed RMM, Palińska K, Pauillac S, Chinain M, Laurent D (2010) Marine toxic cyanobacteria: diversity, environmental responses and hazards. Toxicon 56:836–841. doi:10.1016/j.toxicon.2009.07.023

    CAS  PubMed  Google Scholar 

  • Govindjee, Shevela D (2011) Adventures with cyanobacteria: a personal perspective. Front Plant Sci 2:28. doi:10.3389/fpls.2011.00028

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Res 2:69–97. doi:10.1016/j.algal.2013.01.006

    Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energ 27:1185–1193. doi:10.1016/S0360-3199(02)00131-3

    CAS  Google Scholar 

  • Hallmann C, Summons RE (2014) Paleobiological clues to early atmospheric evolution. In: Holland H, Turekian K (eds) Treatise on geochemistry, vol 6, 2nd edn., The Atmosphere-historyElsevier, Oxford, pp 139–155

    Google Scholar 

  • Henson BJ, Watson LE, Barnum SR (2004) The evolutionary history of nitrogen fixation, as assessed by NifD. J Mol Evol 58:390–399. doi:10.1099/ijs.0.02821-0

    CAS  PubMed  Google Scholar 

  • Hirose E, Hirose M, Neilan BA (2006) Localization of symbiotic cyanobacteria in the colonial Ascidian Trididemnum miniatum (Didemnidae, Ascidiacea). Zool Sci 23:435–442. doi:10.2108/zsj.23.435

    PubMed  Google Scholar 

  • Hoffman P (1976) Stromatolite morphogenesis in Shark Bay, Western Australia. Dev Sedimentol 20:261–271. doi:10.1016/S0070-4571(08)71139-7

    Google Scholar 

  • Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (Cyanobacteria)-state 2004. Algol Stud 117:95–115. doi:10.1127/1864-1318/2005/0117-0095

    Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548. doi:10.1146/annurev-arplant-042110-103811

    CAS  PubMed  Google Scholar 

  • Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177:2387–2395

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199. doi:10.1128/JB.182.5.1191-1199.2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739

    CAS  PubMed  Google Scholar 

  • Hoover RB (2011) Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa, and Enceladus. Journal of Cosmology, volume 13. http://journalofcosmology.com/Life102.html. Accessed 17 Jul 2014

  • Humpage AR, Fenech M, Thomas P, Falconer IR (2000) Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutat Res 472:155–164. doi:10.1016/S1383-5718(00)00144-3

    CAS  PubMed  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286

    CAS  PubMed  Google Scholar 

  • Jahnke LL, Turk-Kubo KA, Parenteau MN, Green SJ, Kubo MDY, Vogel M, Summons RE, Des Marais DJ (2014) Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. Geobiology 12:62–82. doi:10.1111/jbi.12068

    CAS  PubMed  Google Scholar 

  • Janson S (2002) Cyanobacteria in symbiosis with diatoms. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 1–10

    Google Scholar 

  • Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CEM, Antunes MB, Lyra TM, Barreto VST, Azevedo SMFO, Jarvis WR (1998) Liver failure in death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    CAS  PubMed  Google Scholar 

  • Johansen JR, Casamatta DA (2005) Recognizing cyanobacterial diversity through adoption of a new species paradigm. Arch Hydrobiol/Algol Stud 117:71–93. doi:10.1127/1864-1318/2005/0117-0071

    Google Scholar 

  • Johnson JD (2006) The Manganese-calcium oxide cluster of Photosystem II and its assimilation by the Cyanobacteria. http://www.chm.bris.ac.uk/motm/oec/motm.htm#Ref1. Accessed 22 Jul 2014

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Tech 38:569–582. doi:10.1016/j.enzmictec.2005.09.015

    CAS  Google Scholar 

  • Keshari N, Adhikary SP (2013) Characterization of cyanobacteria isolated from biofilms on stone monuments at Santiniketan, India. Biofouling 29:525–536. doi:10.1080/08927014.2013.794224

    CAS  PubMed  Google Scholar 

  • Keshari N, Adhikary SP (2014) Diversity of cyanobacteria on stone monuments and building facades of India and their phylogenetic analysis. Int Biodeter Biodegr 90:45–51. doi:10.1016/j.ibiod.2014.01.014

    CAS  Google Scholar 

  • Komárek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21:349–375. doi:10.4490/algae.2006.21.4.349

    Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259. doi:10.1007/s10750-009-0031-3

    Google Scholar 

  • Komárek J, Golubić S (2005) Proposal for unified nomenclatural rules for cyanobacteria vs. cyanophytes: cyano-guide. Algol Stud 117:17–18

    Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136. doi:10.1073/pnas.0504878102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N (2009) Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis? Rev Palaeobot Palynol 153:62–69. doi:10.1016/j.revpalbo.2008.06.006

    Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820. doi:10.1038/433820a

    PubMed  Google Scholar 

  • Kumari N, Srivastava AK, Bhargava P, Rai LC (2009) Molecular approaches towards assessment of cyanobacterial biodiversity. Afr J Biotechnol 8:4284–4298

    CAS  Google Scholar 

  • Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, Ekman M (2014) Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J 8:1892–1903. doi:10.1038/ismej.2014.35

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee E, Ryan UM, Monis P, McGregor GB, Bath A, Gordon C, Paparini A (2014) Polyphasic identification of cyanobacterial isolates from Australia. Water Res 59:248–261. doi:10.1016/j.watres.2014.04.023

    CAS  PubMed  Google Scholar 

  • Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261:697–698

    CAS  PubMed  Google Scholar 

  • Lewin RA (2002) Prochlorophyta—a matter of class distinctions. Photosynth Res 73:59–61

    CAS  PubMed  Google Scholar 

  • Lewy Z (2013) Life on earth originated where later microbial oxygenic photosynthesis precipitated banded iron formation, suppressing life diversification for 1.4 Ga. Int J Geosci 4:1382–1391. doi:10.4236/ijg.2013.410135

    Google Scholar 

  • Lin S, Henze S, Lundgren P, Bergman B, Carpenter EJ (1998) Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp. Appl Environ Microbiol 64:3052–3064

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lindblad P, Bergman B (1989) Occurrence and localization of phycoerythrin in symbiotic Nostoc of Cycas revoluta and in the free-living isolated Nostoc 7422. Plant Physiol 89:783–785

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lindblad P, Rai AN, Bergman B (1987) The Cycas revoluta-Nostoc symbiosis: enzyme activities of nitrogen and carbon metabolism in the cyanobiont. Microbiology 133:1695–1699

    CAS  Google Scholar 

  • Logan BW, Hoffman P, Gebelein CD (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Mem 22:140–194

    Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315. doi:10.1038/nature13068

    CAS  PubMed  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    CAS  PubMed  Google Scholar 

  • Margulis L (1970) Origin of Eukaryotic Cells. Yale University Press, New Haven

    Google Scholar 

  • Martin W, Kowallik K (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche’. Eur J Phycol 34:287–295. doi:10.1080/09670269910001736342

    Google Scholar 

  • McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75. doi:10.1146/annurev.micro.55.1.49

    CAS  PubMed  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959. doi:10.1046/j.1529-8817.2001.01126.x

    Google Scholar 

  • McFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb Perspect Biol 6:a016105. doi:10.1101/cshperspect.a016105

    PubMed  Google Scholar 

  • Mereschkowski C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604 (addendum in 25:689–691)

    Google Scholar 

  • Mereschkowsky K (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30:353–367

    Google Scholar 

  • Moore D, O’Donohue M, Garnett C, Critchley C, Shaw G (2005) Factors affecting akinete differentiation in Cylindrospermopsis raciborskii (nostocales, cyanobacteria). Freshw Biol 50:345–352. doi:10.1111/j.1365-2427.2004.01324.x

    Google Scholar 

  • Moro I, Rascio N, La Rocca N, Sciuto K, Albertano P, Bruno L, Andreoli C (2010) Polyphasic characterization of a thermo-tolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padova, Italy). Eur J Phycol 45:143–154. doi:10.1080/09670260903564391

    CAS  Google Scholar 

  • Mullen L (2002) Tracking the path of green slime. Astrobiology Magazine. http://www.astrobio.net/topic/origins/extreme-life/tracking-the-path-of-green-slime/. Accessed 23 July 2014

  • Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol 64:609–635. doi:10.1146/annurev-arplant-050312-120124

    CAS  PubMed  Google Scholar 

  • Obukowicz M, Schaller M, Kennedy GS (1981) Ultrastructure and phenolic histochemistry of the Cycas revoluta-Anabaena symbiosis. New Phytol 87:751–759

    Google Scholar 

  • Ohmori M, Ehira S (2014) Spirulina: an example of cyanobacteria as nutraceuticals. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective. Wiley, Oxford, pp 103–118

    Google Scholar 

  • Oren A (2004) A proposal for further integration of the cyanobacteria under the bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902. doi:10.1099/ijs.0.03008-0

    PubMed  Google Scholar 

  • Oren A, Komárek J, Hoffmann L (2009) Nomenclature of the cyanophyta/cyanobacteria/cyanoprokaryotes—What has happened since IAC Luxembourg? Algol Stud 130:17–26. doi:10.1127/1864-1318/2009/0130-0017

    Google Scholar 

  • Ortega-Morales O, Guezennec J, Hernández-Duque G, Gaylarde CC, Gaylarde PM (2000) Phototrophic biofilms on ancient mayan buildings in Yucatan, Mexico. Curr Microbiol 40:81–85. doi:10.1007/s002849910015

    CAS  PubMed  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37. doi:10.1111/j.1758-2229.2008.00004.x

    CAS  PubMed  Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World 1:76–113. doi:10.1100/tsw.2001.16

    CAS  Google Scholar 

  • Pajdak-Stós A, Fialkowska E, Fyda J (2001) Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquat Microb Ecol 23:237–244

    Google Scholar 

  • Palińska KA, Marquardt J (2008) Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales). Arch Microbiol 189:325–335. doi:10.1007/s00203-007-0323-9

    PubMed  Google Scholar 

  • Palińska KA, Surosz W (2014) Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia 740:1–11. doi:10.1007/s10750-014-1971-9

    Google Scholar 

  • Panieri G, Lugli S, Manzi V, Roveri M, Schreiber CB, Palinska KA (2010) Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8:101–111. doi:10.1111/j.1472-4669.2009.00230.x

    CAS  PubMed  Google Scholar 

  • Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from Stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832. doi:10.1128/AEM.71.8.4822-4832.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pate JL (1988) Gliding motility in prokaryotic cells. Can J Microbiol 34:459–465

    CAS  Google Scholar 

  • Pepe-Ranney C, Berelson WM, Corsetti FA, Treants M, Spear JR (2012) Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02698.x

    PubMed  Google Scholar 

  • Pfeiffer C, Bauer T, Surek B, Schömig E, Gründemann D (2011) Cyanobacteria produce high levels of ergothioneine. Food Chem 129:1766–1769. doi:10.1016/j.foodchem.2011.06.047

    CAS  Google Scholar 

  • Potts M (1980) Blue-green algae (cyanobacteria) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19:60–73

    Google Scholar 

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VTS, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26. doi:10.1016/S0140-6736(97)12285-1

    CAS  PubMed  Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (2002) Cyanobacteria in symbiosis. Kluwer Academic, Dordrecht

    Google Scholar 

  • Rajaniemi R, Hrouzek P, Kaštovská K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (nostocales, cyanobacteria). Int J Syst Evol Microbiol 55:11–26. doi:10.1099/ijs.0.63276-0

    CAS  PubMed  Google Scholar 

  • Ramsing NB, Ferris MJ, Ward DM (1997) Light-induced motility of thermophilic Synechococcus isolates from Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 63:2347–2354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104. doi:10.1038/nature07381

    CAS  PubMed  Google Scholar 

  • Ratti S, Knoll AH, Giordano M (2013) Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective. PLoS One 8:e77349. doi:10.1371/journal.pone.0077349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Read N, Connell S, Adams DG (2007) Nanoscale visualization of a fibrillar array in the cell wall of filamentous cyanobacteria and its implications for gliding motility. J Bacteriol 189:7361–7366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reid RP, Macintyre IG, Steneck RS, Browne KM, Miller TE (1995) Stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33:1–18. doi:10.1007/BF02537442

    Google Scholar 

  • Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, Nakayama T, Ishida K, Bhattacharya D (2010) Differential gene retention in plastids of common recent origin. Mol Biol Evol 27:1530–1537. doi:10.1093/molbev/msq032

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds CS, Oliver RL, Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N.Z. J Mar Freshw Res 21:379–390

    Google Scholar 

  • Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238. doi:10.1016/j.sedgeo.2005.12.015

    Google Scholar 

  • Riding R (2011) Microbialites, stromatolites, and thrombolites. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology, encyclopedia of earth science series. Springer, Heidelberg, pp 635–654. doi:10.1007/978-1-4020-9212-1_196

    Google Scholar 

  • Rindi F (2007) Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 619–638. doi:10.1007/978-1-4020-6112-7_34

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61. doi:10.1099/00221287-111-1-1

    Google Scholar 

  • Rossi F, Micheletti E, Bruno L, Adhikary SP, Albertano P, De Philippis R (2012) Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28:215–224. doi:10.1080/08927014.2012.663751

    CAS  PubMed  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    CAS  PubMed  Google Scholar 

  • Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3:145–165. doi:10.1111/j.1472-4669.2005.00050.x

    Google Scholar 

  • Sandh G, Xu L, Bergman B (2012) Diazocyte development in the marine diazotrophic cyanobacterium Trichodesmium. Microbiology 158:345–352. doi:10.1099/mic.0.051268-0

    CAS  PubMed  Google Scholar 

  • Schimper AFW (1883) Über die Entwicklung der Chlorophyllkörner und Farbkörper. Bot. Zeitung. 41:105–114, 121–131, 137–146, 153–162

  • Schopf JW, Farmer JD, Foster IS, Kudryavtsev AB, Gallardo VA, Espinoza C (2012) Gypsum-permineralized microfossils and their relevance to the search for life on Mars. Astrobiology 12:619–633. doi:10.1089/ast.2012.0827

    CAS  PubMed  Google Scholar 

  • Sciuto K, Rascio N, Andreoli C, Moro I (2011) Polyphasic characterization of ITD-01, a cyanobacterium isolated from the Ischia Thermal District (Naples, Italy). Fottea 11:31–39

    Google Scholar 

  • Sciuto K, Andreoli C, Rascio N, La Rocca N, Moro I (2012) Polyphasic approach and typification of selected Phormidium strains (cyanobacteria). Cladistics 28:357–374. doi:10.1111/j.1096-0031.2011.00386.x

    Google Scholar 

  • Sciuto K, Wolf MA, Schiavon M, Moro I (2013) Barcoding PATHS: a new database for plant and algal type and historical specimens. Taxon 62:647–648. doi:10.12705/623.32

    Google Scholar 

  • Sellner KG (1997) Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol Oceanogr 42:1089–1104. doi:10.1016/j.ecss.2006.05.022

    Google Scholar 

  • Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 3:383–406. doi:10.1007/s10295-003-0074-9

    Google Scholar 

  • Seo P, Yokota A (2003) The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 49:191–203

    CAS  PubMed  Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:R567–R574. doi:10.1016/j.cub.2009.05.054

    CAS  PubMed  Google Scholar 

  • Sharma NK, Tiwari SP, Tripathi K, Rai AK (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23:1059–1081. doi:10.1007/s10811-010-9626-3

    CAS  Google Scholar 

  • Shen X, Lam PKS, Shaw GR, Wickramasinghe W (2002) Genotoxicity investigation of a cyanobacterial toxin, cylindrospermopsin. Toxicon 40:1499–1501. doi:10.1016/S0041-0101(02)00151-4

    CAS  PubMed  Google Scholar 

  • Sherman DM, Troyan TA, Sherman LA (1994) Localisation of membrane proteins in the cyanobacterium Synechococcus sp. PCC 7942. Radial asymmetry in the photosynthetic complexes. Plant Physiol 106:251–262. doi:10.1104/pp.106.1.251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110:1053–1058. doi:10.1073/pnas.1217107110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95. doi:10.1080/07388550500248498

    CAS  PubMed  Google Scholar 

  • Skulberg MO, Codd GA, Carmichael WW (1984) Toxic blue-green algae in Portuguese freshwaters. Arch Hydrobiol 130:439–451

    Google Scholar 

  • Smith AM, Andrews JE, Uken R. Thackeray Z, Perissinotto R, Leuci R, Marca-Bell A (2011) Rock pool tufa stromatolites on a modern South African wave-cut platform: partial analogues for Archaean stromatolites? Terra Nova 23:375–381. doi:10.1111/j.1365-3121.2011.01022.x

  • Song JY, Cho HS, Cho JI, Jeon JS, Lagarias JC, Park YI (2011) Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 108:10780–10785. doi:10.1073/pnas.1104242108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soo RM, Skennerton CT, Sekiguchi Y et al (2014) An expanded genomic representation of the phylum cyanobacteria. Genome Biol Evol 6:1031–1045. doi:10.1093/gbe/evu073

    PubMed Central  PubMed  Google Scholar 

  • Soule T, García-Pichel F (2014) Ultraviolet photoprotective compounds from cyanobacteria in biomedical applications. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective. Wiley, Chichester, pp 119–144. doi:10.1002/9781118402238.ch8

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849. doi:10.1099/00207713-44-4-846

    CAS  Google Scholar 

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32. doi:10.1111/j.1469-8137.1995.tb03051.x

    CAS  Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    CAS  PubMed  Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA et al (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of nomenclature of bacteria. Int J Syst Bacteriol 28:35–36. doi:10.1099/00207713-28-2-335

    Google Scholar 

  • Steindler L, Huchon D, Avni A, Ilan M (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131. doi:10.1128/AEM.71.7.4127-4131.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Straubinger-Gansberger N, Gruber M, Kaggwa MN, Lawton L, Omondi Oduor S, Schagerl M (2014) Sudden flamingo deaths in Kenyan Rift Valley lakes. Wildl Biol 20:185–189. doi:10.2981/wlb.00018

    Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333. doi:10.1128/AEM.71.11.7327-7333.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teneva I, Dzhambazov B, Mladenov R, Schirmer K (2005) Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus. J Phycol 41:188–194. doi:10.1111/j.1529-8817.2005.04054.x

    CAS  Google Scholar 

  • Thompson PA, Jameson I, Blackburn SI (2009) The influence of light quality on akinete formation and germination in the toxic cyanobacterium Anabaena circinalis. Harmful Algae 8:504–512. doi:10.1016/j.hal.2008.10.004

    CAS  Google Scholar 

  • Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550. doi:10.1126/science.1222700

    CAS  PubMed  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447. doi:10.1073/pnas.0600999103

    PubMed Central  CAS  PubMed  Google Scholar 

  • van den Hoek C, Mann D, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, United Kingdom

    Google Scholar 

  • Voloshko L, Kopecky J, Safronova T, Pljusch A, Titova N, Hrouzek P, Drabkova V (2008) Toxins and other bioactive compounds produced by cyanobacteria in Lake Ladoga. Est J Ecol 57:100–110. doi:10.3176/eco.2008.2.02

    Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whitton BA (2012) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht

    Google Scholar 

  • Wiethaus J, Busch AWU, Dammeyer T, Frankenberg-Dinkel N (2010) Phycobiliproteins in Prochlorococcus marinus: biosynthesis of pigments and their assembly into proteins Eur. J Cell Biol 89:1005–1010. doi:10.1016/j.ejcb.2010.06.017

    CAS  Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 1–25

    Google Scholar 

  • Wilmotte A, Herdmann M (2001) Phylogenetic relationships among cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York, pp 487–493

    Google Scholar 

  • Withers NW, Alberte RS, Lewin RA, Thornber JP, Britton G, Goodwin TW (1978) Photosynthetic unit size, carotenoids, and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga. Proc Natl Acad Sci USA 75:2301–2305

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1970) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eukarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

  • Wolgemuth CW, Oster G (2004) The junctional pore complex and the propulsion of bacterial cells. J Mol Microbiol Biotechnol 7:72–77. doi:10.1159/000077871

    CAS  PubMed  Google Scholar 

  • Wolk CP (1973) Physiology and cytological chemistry of blue-green algae. Bact Rev 37:32–101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zanchett G, Oliveira-Filho EC (2013) Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 5:1896–1917. doi:10.3390/toxins5101896

    PubMed Central  PubMed  Google Scholar 

  • Žegura B, Štraser A, Filipič M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins—a review. Mutat Res 727:16–41. doi:10.1016/j.mrrev.2011.01.002

    PubMed  Google Scholar 

  • Zimmer C (2013) Earth’s oxygen: a mystery easy to take for granted. New York Times. http://www.nytimes.com/2013/10/03/science/earths-oxygen-a-mystery-easy-to-take-for-granted.html. Accessed 23 July 2014

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive and accurate comments, which helped us to improve this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Sciuto.

Additional information

Communicated by Anurag chaurasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciuto, K., Moro, I. Cyanobacteria: the bright and dark sides of a charming group. Biodivers Conserv 24, 711–738 (2015). https://doi.org/10.1007/s10531-015-0898-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0898-4

Keywords

Navigation