Skip to main content

Advertisement

Log in

Conservation along a hotspot rim: spiders in Brazilian coastal restingas

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Protected areas are essential for the maintenance of biodiversity, but defining criteria for prioritizing areas to conserve is not an easy task. In general, selection has been based on species richness and endemism of plants and vertebrates; however, these do not necessarily match invertebrate data, hence the need of using other groups in conservation prioritization. Moreover, species richness represents one of several biodiversity facets and does not subsume other facets such as functional and phylogenetic diversity. Restingas are coastal ecosystems within the Atlantic Forest biome, one of the World’s biodiversity hotspots. We investigated whether there is congruence between three different spider biodiversity facets: functional (FD, the variety of functional traits of species), phylogenetic (PD, the evolutionary distinctness of species), and taxonomic (TD, the number and the relative abundance of species), and whether currently protected restingas are effective in protecting these facets. We studied vegetation-living spider communities in 11 restingas along 2,000 km of the Brazilian coast. We found that no value of any biodiversity facet was higher in protected restingas compared with unprotected ones. We demonstrated low congruence between the three biodiversity facets, so that the use of TD as a surrogate of other facets is unwarranted. Whilst some protected restingas hold high values of spider TD, other still unprotected areas present high PD or FD. This result suggests that conservation efforts should be extended to every remaining restinga because they are unique sites to at least one spider biodiversity facet. In particular, we recommend three unprotected restingas as high priorities in future conservation plans based on spider diversity, which corroborate findings for plants and vertebrates in the same sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agnarsson I (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linn Soc 141:447–626

    Article  Google Scholar 

  • Agnarsson I, Gregorič M, Blackledge TA, Kuntner M (2013) The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs. J Zool Syst Evol Res 51:100–106

    Article  Google Scholar 

  • Álvarez-Padilla F, Dimitrov D, Giribet G, Hormiga G (2009) Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics 25:109–146

    Article  Google Scholar 

  • Arnedo MA, Hormiga G, Scharff N (2009) Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics 25:231–262

    Article  Google Scholar 

  • Assis AMDE, Pereira OJ, Thomaz LD (2004) Fitossociologia de uma floresta de restinga no Parque Estadual Paulo César Vinha, Setiba, município de Guarapari (ES). Rev Bras Bot 27:349–361

    Article  Google Scholar 

  • Bayer S, Schönhofer AL (2013) Phylogenetic relationships of the spider family Psechridae inferred from molecular data, with comments on the Lycosoidea (Arachnida: Araneae). Invertebr Syst 27:53–80

    Article  Google Scholar 

  • Bodner MR, Maddison WP (2012) The biogeography and age of salticid spider radiations (Araneae: Salticidae). Mol Phylogenet Evol 65:213–240

    Article  PubMed  Google Scholar 

  • Câmara IG (2003) Brief history of conservation in the Atlantic Forest. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, pp 31–42

    Google Scholar 

  • Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001a) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001b) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592

    Article  Google Scholar 

  • Colwell RK (2009) Biodiversity: concepts, patterns, and measurement. In: Levin S (ed) The Princeton guide to ecology. Princeton University Press, Princeton

    Google Scholar 

  • D’Amen M, Bombi P, Campanaro A, Zapponi L, Bologna MA, Mason F (2013) Protected areas and insect conservation: questioning the effectiveness of Nature 2000 network for saproxylic beetles in Italy. Anim Conserv 16:370–378

    Article  Google Scholar 

  • De Bello F, Lavergne S, Meynard CN, Lepš J, Thuiller W (2010) The partitioning of diversity: showing Theseus a way out of the labyrinth. J Veg Sci 21:992–1000

    Article  Google Scholar 

  • Dean W (1995) With broadax and firebrand: the destruction of the Brazilian Atlantic Forest. University of California Press, Berkeley

    Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    PubMed  Google Scholar 

  • Dimitrov D, Lopardo L, Giribet G, Arnedo MA, Álvarez-Padilla F, Hormiga G (2012) Tangled in a sparse spider web: single origino f orb weavers and their spinning work unravelled by denser taxonomic sampling. Proc R Soc B 279:1341–1350

    Article  PubMed Central  PubMed  Google Scholar 

  • Döbel HG, Denno RF, Coddington JA (1990) Spider (Araneae) community structure in an intertidal salt marsh: effects of vegetation structure and tidal flooding. Environ Entomol 19:1356–1370

    Article  Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Forest F et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  CAS  PubMed  Google Scholar 

  • Gavish-Regev E, Lubin Y, Coll M (2008) Migration patterns and functional groups of spiders in a desert agroecosystem. Ecol Entomol 33:202–212

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100

    Article  Google Scholar 

  • Gonçalves-Souza T. (2012) Decifrando a função de processos ecológicos e evolutivos na distribuição local e regional de artrópodes em plantas. PhD thesis. Universidade Estadual Paulista/UNESP

  • Gonçalves-Souza T, Brescovit AD, Rossa-Feres DC, Romero GQ (2010) Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest. J Arachnol 38:270–279

    Article  Google Scholar 

  • Gonçalves-Souza T, Diniz-Filho JAF, Romero GQ (2014) Disentangling the phylogenetic and ecological components of spider phenotypic variation. PLoS ONE 9(2):e89314

    Article  PubMed Central  PubMed  Google Scholar 

  • Greenstone MH (1984) Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62:299–304

    Article  Google Scholar 

  • Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneiodea). Zool J Linn Soc 123:1–99

    Article  Google Scholar 

  • Hedin MC, Maddison WP (2001) A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Mol Phylogenet Evol 18:386–403

    Article  CAS  PubMed  Google Scholar 

  • Heino J, Mykrä H, Kotanen J (2008) Weak relationships between landscape characteristics and multiple facets of stream macroinvertebrate biodiversity in a boreal drainage basin. Landscape Ecol 23:417–426

    Article  Google Scholar 

  • Hidasi-Neto J, Loyola RD, Cianciaruso MV (2013) Conservation actions based on red lists do not capture the functional and phylogenetic diversity of birds in Brazil. PLoS One 8:e73431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffmann M et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Hormiga G (1994) Cladistics and the comparative morphology of linyphiid spiders and their relatives (Araneae, Araneoidea, Linyphiidae). Zool J Linn Soc 111:1–71

    Article  Google Scholar 

  • Huang S, Stephens PR, Gittleman JL (2012) Traits, trees and taxa: global dimensions of biodiversity in mammals. Proc R Soc B 279:4997–5003

    Article  PubMed Central  PubMed  Google Scholar 

  • Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2:e296

    Article  PubMed Central  PubMed  Google Scholar 

  • Kendall MG, Babington Smith B (1939) The problem of m rankings. Ann Math Stat 10:275–287

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lewinsohn TM, Freitas AVL, Prado PI (2005) Conservation of terrestrial invertebrates and their habitats in Brazil. Conserv Biol 19:640–645

    Article  Google Scholar 

  • Lewis RJ, Marrs RH, Pakeman RJ (2014) Inferring temporal shifts in landuse intensity from functional response traits and functional diversity patterns: a study of Scotland’s machair grassland. Oikos 123:334–344

    Article  Google Scholar 

  • Maddison WP, Bodner MR, Needham KM (2008) Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae). Zootaxa 64:49–64

    Google Scholar 

  • Manicom C, Schwarzkopf L, Alford RA, Schoener TW (2008) Self-made shelters protect spiders from predation. Proc Natl Acad Sci USA 105:14903–14907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  PubMed  Google Scholar 

  • Marques MCM, Swaine MD, Liebsch D (2011) Diversity distribution and floristic differentiation of the coastal lowland vegetation: implications for the conservation of the Brazilian Atlantic Forest. Biodivers Conserv 20:153–168

    Article  Google Scholar 

  • Mazel F et al (2014) Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob Ecol Biogeogr 23:836–847

    Article  PubMed Central  PubMed  Google Scholar 

  • Ministério do Meio Ambiente, Brasil(MMA) (2000) SNUC (Sistema Nacional de Unidades de Conservação). Document in portuguese. http://www.icmbio.gov.br/sisbio/images/stories/instrucoes_normativas/SNUC.pdf

  • Ministério do Meio Ambiente, Brasil(MMA) (2004) Priority areas for the conservation, sustainable use and benefit sharing of Brazilian Biological Diversity. http://www.mma.gov.br/estruturas/chm/_arquivos/Prioritary_Area_Book.pdf

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876

    Article  Google Scholar 

  • Mouillot D et al (2011) Protected and threatened components of fish biodiversity in the Mediterran Sea. Curr Biol 21:1–7

    Article  Google Scholar 

  • Mouquet N et al (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87:769–785

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nentwig W, Wissel C (1986) A comparison of prey lengths among spiders. Oecologia 68:595–600

    Article  Google Scholar 

  • Neuhofer D, Machan R, Schmid A (2009) Visual perception of motion in a hunting spider. J Exp Biol 212:2819–2823

    Article  PubMed  Google Scholar 

  • New TR (1999) Untangling the web: spiders and the challenges of invertebrate conservation. J Insect Conserv 3:251–256

    Article  Google Scholar 

  • Niederegger S (2013) Functional aspects of spider scopulae. In: Nentwig W (ed) Spider Ecophysiology. Springer, Heidelberg, pp 57–66

    Chapter  Google Scholar 

  • Oksanen J et al (2013) vegan: Community Ecology Package

  • Orme CDL et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019

    Article  CAS  PubMed  Google Scholar 

  • Pavoine S, Vallet J, Dufour A-B, Gachet S, Daniel H (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118:391–402

    Article  Google Scholar 

  • Preisser EL, Orrock JL, Schmitz OJ (2007) Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions. Ecology 88:2744–2751

    Article  PubMed  Google Scholar 

  • Quinn R, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing

  • Redding DW, Mooers AØ (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20:1670–1678

    Article  PubMed  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Riechert SE (1999) The hows and whys of successful pest suppression by spiders: insights from case studies. J Arachnol 27:387–396

    Google Scholar 

  • Rocha CFD, Van Sluys M, Bergallo HG, Alves MAS (2005) Endemic and threatened tetrapods in the restingas of the biodiversity corridors of Serra do Mar and of the Central da Mata Atlântica in eastern Brazil. Braz J Biol 65:159–168

    Article  CAS  PubMed  Google Scholar 

  • Rocha CFD, Bergallo HG, Van Sluys M, Alves MAS, Jamel CE (2007) The remnants of restinga habitats in the brazilian Atlantic Forest of Rio de Janeiro state, Brazil: habitat loss and risk of disappearance. Braz J Biol 67:263–273

    Article  CAS  PubMed  Google Scholar 

  • Rocha CFD, Hatano FH, Vrcibradic D, Van Sluys M (2008) Frog species richness, composition and beta-diversity in coastal Brazilian restinga habitats. Braz J Biol 68:101–107

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ASL et al (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092–1100

    Article  Google Scholar 

  • Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Ann Bot 90:517–524

    Article  PubMed Central  PubMed  Google Scholar 

  • Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208

    Article  Google Scholar 

  • Scarano FR et al (2001) Four sites with contrasting environmental stress in southeastern Brazil: relations of species, life form diversity, and geographic distribution to ecophysiological parameters. Bot J Linn Soc 136:345–364

    Article  Google Scholar 

  • Scharff NJ, Coddington JA (1997) A phylogenetic analysis of the orbweaving spider family Araneidae (Arachnida, Araneae). Zool J Linn Soc 120:355–424

    Article  Google Scholar 

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80:469–484

    Article  Google Scholar 

  • Schweiger O et al (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139

    Article  Google Scholar 

  • Schweiger O, Klotz S, Durka W, Kühn I (2008) A comparative test of phylogenetic diversity indices. Oecologia 157:485–495

    Article  PubMed  Google Scholar 

  • Soares-Filho B, Rajão R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s forest code. Science 344:363–364

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648

    Article  PubMed  Google Scholar 

  • Tucker CM, Cadotte MW, Davies TJ, Rebelo TG (2012) Incorporating geographical and evolutionary rarity into conservation prioritization. Conserv Biol 26:593–601

    Article  PubMed  Google Scholar 

  • Uehara-Prado M et al (2009) Selecting terrestrial arthropods as indicators of small-scale disturbance: a first approach in the Brazilian Atlantic Forest. Biol Conserv 142:1220–1228

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Waldorf E (1976) Spider size, microhabitat selection, and use of food. Am Midl Nat 96:76–87

    Article  Google Scholar 

  • Walpole M et al (2009) Tracking progress toward the 2010 biodiversity target and beyond. Science 325:1503–1504

    Article  PubMed  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    Article  PubMed  Google Scholar 

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One 8:e62682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rob Colwell, Mário Almeida-Neto, and José Hidasi-Neto for stimulating ideas during the preparation of the manuscript, and Vincent Devictor and Fabio Scarano for their comments and suggestions. The jackknife procedure was performed with help of J. Hidasi-Neto. This study was supported by FAPESP doctoral and post-doctoral Grants to TG-S. AJS was financially supported by CNPq (Grants 308072/2012-0 and 475179/2012-9), FAPEMIG (PPM-00335-13) and INCT de Hymenoptera Parasitóides da Região Sudeste Brasileira (http://www.hympar.ufscar.br/). TML and GQR received support from FAPESP Grants and CNPq research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Gonçalves-Souza.

Additional information

Communicated by Dirk Sven Schmeller.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves-Souza, T., Santos, A.J., Romero, G.Q. et al. Conservation along a hotspot rim: spiders in Brazilian coastal restingas. Biodivers Conserv 24, 1131–1146 (2015). https://doi.org/10.1007/s10531-014-0846-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0846-8

Keywords

Navigation