Skip to main content

Advertisement

Log in

Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Model systems have had a profound influence on the development of ecological theory and general principles. Compared to alternatives, the most effective models share some combination of the following characteristics: simpler, smaller, faster, general, idiosyncratic or manipulable. We argue that biological soil crusts (biocrusts) have unique combinations of these features that should be more widely exploited in community, landscape and ecosystem ecology. In community ecology, biocrusts are elucidating the importance of biodiversity and spatial pattern for maintaining ecosystem multifunctionality due to their manipulability in experiments. Due to idiosyncrasies in their modes of facilitation and competition, biocrusts have led to new models on the interplay between environmental stress and biotic interactions and on the maintenance of biodiversity by competitive processes. Biocrusts are perhaps one of the best examples of micro-landscapes—real landscapes that are small in size. Although they exhibit varying patch heterogeneity, aggregation, connectivity and fragmentation, like macro-landscapes, they are also compatible with well-replicated experiments (unlike macro-landscapes). In ecosystem ecology, a number of studies are imposing small-scale, low cost manipulations of global change or state factors in biocrust micro-landscapes. The versatility of biocrusts to inform such disparate lines of inquiry suggests that they are an especially useful model system that can enable researchers to see ecological principles more clearly and quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bastian D (2001) Landscape ecology—towards a unified discipline? Landsc Ecol 16:757–766

    Article  Google Scholar 

  • Belnap J (1996) Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol Fert Soils 23:362–367

    Article  CAS  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrological cycles. Hydrol Proc 20:3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Eldridge D (2003) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 363–385

    Chapter  Google Scholar 

  • Belnap J, Lange OL (2003) Biological soil crusts: structure, function and management. Springer, Berlin

    Book  Google Scholar 

  • Belnap J, Warren S (1998) Measuring restoration success: a lesson for Patton’s tank tracks. Ecol Bull 79:33

    Google Scholar 

  • Belnap J, Hawkes CV, Firestone MK (2003) Boundaries in miniature: two examples from soil. Bioscience 53:739–749

    Article  Google Scholar 

  • Belnap J, Welter JR, Grimm NB, Barger NN, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semi-arid watersheds. Ecology 86:298–307

    Article  Google Scholar 

  • Belnap J, Phillips SL, Troxler TT (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:63–76

    Article  Google Scholar 

  • Bertness M, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bowker MA, Maestre FT (2012) Inferring local competition intensity from patch size distributions: a test using biological soil crusts. Oikos 121:1914–1922

    Article  Google Scholar 

  • Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial crusts. Microb Ecol 43:13–25

    Article  CAS  PubMed  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein N (2006) Correlates of biological soil crust distribution across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Escolar C (2010a) Biological crusts as a model system for examining the biodiversity-function relationship in soils. Soil Biol Biochem 42:405–417

    Article  CAS  Google Scholar 

  • Bowker MA, Maestre FT, Soliveres S (2010b) Competition increases with abiotic stress and regulates the diversity of biological soil crusts. J Ecol 98:551–560

    Article  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo AP (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Func Ecol 25:787–795

    Article  Google Scholar 

  • Bowker MA, Eldridge DJ, Val J, Soliveres S (2013a) Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts. Soil Biol Biochem 61:14–22

    Article  CAS  Google Scholar 

  • Bowker MA, Maestre FT, Mau RL (2013b) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem mutlifunctionality. Ecosystems 16:923–933

    Article  CAS  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM, Lortie CM, Cavieres LA, Kunstler G et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, Berlin

    Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie C, Michalet R, Paolini L, Pugnaire FT, Newingham B, Aschhoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–888

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle D, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Monroy AP, Bowker MA, Maestre FT, Rodriguez-Echeverría S, Martinez I, Barraza-Zepeda CE, Escolar C (2011) Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–174

    Article  Google Scholar 

  • Chapin FS, Torn MS, Tateno M (1996) Principles of ecosystem sustainability. Am Nat 148:1016–1037

    Article  Google Scholar 

  • Coe KK, Belnap J, Grote E, Sparks J (2012) Physiological ecology of the desert moss Syntrichia caninervis after 10 years exposure to elevated CO2: evidence for enhanced photosynthetic thermotolerance. Physiol Plant 144:346–356

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Cramer MD, Barger NN (2013) Are Namibian “fairy circles” the consequence of self-organizing spatial vegetation patterning? PLoS ONE 8:e70876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Csotonyi JT, Addicott JF (2004) Influence of trampling-induced microtopography on growth of the soil crust bryophyte Ceratodon purpureus in Jasper National Park. Can J Bot 82:1382–1392

    Article  Google Scholar 

  • Darby BJ, Housman DC, Zaki AM, Shamout Y, Adl SM, Belnap J, Neher D (2006) Effecs of altered temperature and precipitation on desert protozoa associated with biological soil crusts. J Eukaryot Microbiol 53:507–514

    Article  PubMed  Google Scholar 

  • Davidson DW, Bowker MA, George D, Phillips SL, Belnap J (2002) Treatment effects on performance of N-fixing lichens in disturbed soil crusts on the Colorado Plateau. Ecol Appl 12:1391–1405

    Article  Google Scholar 

  • Escolar C, Martinez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Phil Trans R Soc B 367:3087–3099

    Article  PubMed Central  PubMed  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson P (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231

    Article  PubMed  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka R (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • George DB, Davidson DW, Schleip KC, Patrell-Kim LJ (2000) Microtopography of microbiotic crusts on the Colorado Plateau, and the distribution of component organisms. West N Am Nat 60:343–354

    Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous plant communities. Nature 242:344–347

    Article  Google Scholar 

  • Haugland JE, Beatty SW (2005) Vegetation establishment, succession and microsite frost disturbance on glacier forelands within patterned ground chronosequences. J Biogeogr 32:145–153

    Article  Google Scholar 

  • Hawksworth DL (1982) Secondary fungi in the lichen symbioses: parasites, saprophytes and parasymbionts. J Hattori Bot Lab 52:357–366

    Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190

    Article  CAS  PubMed  Google Scholar 

  • Hogg ID, Cary SC, Convey P, Newsham KK, O’Donnel AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292

    Article  CAS  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel for Climate Change) (2007) Climate change 2007: synthesis report. United Nations, Geneva

    Book  Google Scholar 

  • Jessup CM, Kassen R, Forde S, Kerr B, Bucling A, Rainy PB, Bohannen BJM (2004) (Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  PubMed  Google Scholar 

  • Kéfi S, Rietkerk M, Alados C, Pueyo Y, Papanastasis VP, ElAich A, de Ruiter PC (2007) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–217

    Article  PubMed  Google Scholar 

  • Kéfi S, van Baalem M, Rietkerk M, Loreau M (2008) Evolution of local facilitation in arid ecosystems. Am Nat 172:E1–E17

    Article  PubMed  Google Scholar 

  • Kidron GJ, Yair A (1997) Rainfall–runoff relationships over encrusted dune surfaces, Nizzana, western Negev, Israel. Earth Surf Proc Landf 22:1169–1184

    Article  Google Scholar 

  • Koch GW, Sillett SC, Jenning GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    Article  CAS  PubMed  Google Scholar 

  • Laird RA, Schamp BS (2006) Competitive intransitivity promotes species coexistence. Am Nat 168:182–193

    Article  PubMed  Google Scholar 

  • Lázaro R, Cantón Y, Solé-Benet A, Bevan J, Alexander R, Sancho LG, Puigdefábregas J (2008) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badland (SE Spain) and its landscape effects. Geomorph 102:252–266

    Article  Google Scholar 

  • Maestre FT (2003) Small-scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist 35:71–81

    Article  Google Scholar 

  • Maestre FT, Escudero A (2009) Is the patch-size distribution of vegetation a suitable indicator of desertification processes? Ecology 90:1729–1735

    Article  PubMed  Google Scholar 

  • Maestre FT, Escudero A, Martinez I, Guerrero C, Rubio A (2005) Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Func Ecol 19:566–573

    Article  Google Scholar 

  • Maestre FT, Escolar C, Martinez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–266

    Article  Google Scholar 

  • Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a) Species richness effects on ecosystem multifunctionality depend on evenness, composition, and spatial pattern. J Ecol 100:317–330

    Article  CAS  Google Scholar 

  • Maestre FT, Salguero-Gómez R, Quero JL (2012b) It’s getting hotter in here: determining and projecting the impacts of global change on drylands. Phil Trans R Soc B 367:3062–3075

    Article  PubMed Central  PubMed  Google Scholar 

  • Maestre FT, Escolar C, Ladrón de Guevara M, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol. doi:10.1111/gcb.12306

    Google Scholar 

  • Malam Issa O, Trichet J, Défarge C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196

    Article  Google Scholar 

  • McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165

    Article  CAS  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Milne BT (1992) Spatial aggregation and neutral models in fractal landscapes. Am Nat 139:32–57

    Article  Google Scholar 

  • Naeem S, Loreau M, Inchausti P (2002) Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Oxford University Press, New York, pp 3–11

    Google Scholar 

  • Noy-Meir I (1975) Stability of grazing systems: an application of predator-prey graphs. J Ecol 63:459–481

    Article  Google Scholar 

  • NRC (Natural Resources Council) (2001) Basic research opportunities in earth science. National Academy Press, Washington, D.C.

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Pangle RE, Hill JP, Plaut JA, Yepez EA, Elliot JR, Gehres N, McDowell NG, Pockman WT (2012) Methodology and performance of a rainfall manipulation experiment in a piñon-juniper woodland. Ecosphere 3: art28

  • Pickett STA, Cadenasso ML (1995) Landscape ecology: spatial heterogeneity in ecological systems. Science 269:331–334

    Article  CAS  PubMed  Google Scholar 

  • Read CF, Duncan DH, Vesk PA, Elith J (2008) Biological soil crust distribution is related to patterns of fragmentation and landuse in a dryland agricultural landscape of southern Australia. Lands Ecol 23:1093–1105

    Article  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Change. doi:10.1038/nclimate1596

    Google Scholar 

  • Reich PB (2009) Elevated CO2 reduced losses of plant diversity caused by nitrogen deposition. Science 326:1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–812

    Article  CAS  PubMed  Google Scholar 

  • Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23:169–175

    Article  PubMed  Google Scholar 

  • Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands. U.S. Government Printing Office, Denver, Colorado

  • Scanlon TM et al (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–212

    Article  CAS  PubMed  Google Scholar 

  • Stark LR, Mishler BD, McLetchie DN (1998) Sex expression and growth rates in natural populations of the desert soil crustal moss Syntrichia caninervis. J Arid Environ 40:401–416

    Article  Google Scholar 

  • Steven B, Gallego-Graves L, Belnap J, Kuske CR (2013) Dryland soil microbial communities display psatila biogeographical patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113

    Article  CAS  PubMed  Google Scholar 

  • Stocker-Wörgötten E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis and thallus morphogenesis. Bryologist 104:576–581

    Article  Google Scholar 

  • Tilman D (1977) Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58:338–348

    Article  CAS  Google Scholar 

  • Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365

    Article  Google Scholar 

  • Tongway D, Valentin C, Seghieri J (2001) Banded vegetation patterning in arid and semiarid environments. Springer, Berlin

    Book  Google Scholar 

  • Ustin SL, Valko PG, Kefauver SC, Santos MJ, Zimpfer JF, Smith SD (2009) Remote sensing of biological soil crust under simulated climate change manipulations in the Mojave Desert. Remote Sens Environ 113:317–328

    Article  Google Scholar 

  • Valentin C, d′Herbès JM, Poesen J (1999) Soil and water components of banded vegetation patterns. Catena 37:1–24

    Article  Google Scholar 

  • Vitousek P (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876

    Article  Google Scholar 

  • Vitousek P (2002) Oceanic islands as model systems for ecological studies. J Biogeogr 29:573–582

    Article  Google Scholar 

  • Vitousek P (2006) Ecosystem science and human–environment interaction in the Hawaiian archipelago. J Ecol 94:510–521

    Article  Google Scholar 

  • Weiner J (1994) The beak of the finch: a story of evolution in our time. Knopf, New York

    Google Scholar 

  • Wertin T, Phillips S, Reed S, Belnap J (2012) Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts. Biol Fert Soils 48:797–805

    Article  CAS  Google Scholar 

  • Wiens JA, Milne BT (1989) Scaling of ‘landscapes’ in landscape ecology, or, landscape ecology from a beetle’s perspective. Lands Ecol 1:87–96

    Article  Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365

    Article  Google Scholar 

  • Xu S, Yin C, He M, Wang W (2008) A technology for rapid reconstruction of moss-dominated soil crusts. Environ Eng Sci 25:1129–1137

    Article  CAS  Google Scholar 

  • Zavaleta ES, Pasari JS, Hulvey CB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci 107:1443–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zelikova TJ, Houseman DC, Grote EE, Neher DA, Belnap J (2012) Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Bowker.

Additional information

Communicated by Guest Editors of S. I.: Biocrust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowker, M.A., Maestre, F.T., Eldridge, D. et al. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23, 1619–1637 (2014). https://doi.org/10.1007/s10531-014-0658-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0658-x

Keywords

Navigation