Skip to main content

Advertisement

Log in

Conservation priorities in the Southern Central Andes: mismatch between endemism and diversity hotspots in the regional flora

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

North western Argentina, the southernmost portion of the tropical Andes, contains one of the main areas of endemism within the Southern Cone, as well as one of the main diversity hotspots of the country. Historically its reserve area systems have been located in the richest ecoregion of the area; the Southern Andean Yungas. We evaluated the effectiveness of the current protected areas in preserving the endemic flora of the region. The distributions of 505 endemic species were either modeled or included as observed data to determine endemism hotspots in each ecoregion. The endemic species were mainly found in arid ecoregions such as the High Monte and the Central Andean Puna, as well as in the transition zones between these regions and the Southern Andean Yungas. We found that more than 1/3 of the endemic species are unprotected in their entire ranges by the current system, while nearly half of the species are protected in only 5 % of their distribution ranges. New priority areas were chosen to increase the effectiveness based on the irreplaceability concept. We show that adding 251 new cells of 100 km2 each would improve the protection values and convert the system to effective. The present paper highlights that priorities set on the basis of species richness may not successfully conserve areas of high plant endemism. However, zoologist would have to realize similar assessments in the endemic fauna in order to find the optimal designed of protected areas system to conserve both the endemic flora and fauna in the Southern Central Andes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aagesen L, Szumik CA, Zuloaga F, Morrone O (2009) Quantitative biogeography in the South America highlands-recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25:295–310

    Article  Google Scholar 

  • Aagesen L, Bena MJ, Nomdedeu S, Panizza A, López R, Zuloaga F (2012) Areas of endemism in the Southern Central Andes. Darwiniana 50:218–251

    Google Scholar 

  • Administracion de Parques Nacionales (APN) (2007) Sistema de Información de Biodiversidad. (http://www.sib.gov.ar). Accessed Apr 2012

  • Antonelli A, Nylander JAA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. PNAS 106:9749–9754

    Article  CAS  PubMed  Google Scholar 

  • Benoit I (1996) Representación ecológica del Sistema Nacional de Áreas Silvestres Protegidas del Estado. In: Muñoz M, Nuñez H, Yañez J (eds) Libro rojo de los sitios prioritarios para la conservación de la diversidad biológica en Chile. Santiago

  • Bianchi AR, Yañez CE (1992) Las precipitaciones en el noroeste argentino. INTA, Salta

    Google Scholar 

  • Birch CPD, Oom SP, Beecham JA (2007) Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol Model 206:347–359

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones Fitogeográficas Argentinas. In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería, Buenos Aires

  • Carvalho SB, Brito JC, Pressey RL, Crespo E, Possingham HP (2010) Simulating the effects of using different types of species distribution data in reserve selection. Biol Conserv 143:426–438

    Article  Google Scholar 

  • Cowling R (2001) Endemism. In: Levin SA (ed) Encyclopedia of Biodiversity, vol. 2. Academic Press, San Diego

  • Diaz-Gomez JM (2007) Endemism in liolaemus (Iguania: Liolaemidae) from the Argentinian Puna. South Am J Herpetol 2:59–68

    Article  Google Scholar 

  • Donato M, Posadas P, Miranda-Esquivel DR, Jaureguizar EO, Cladera G (2003) Historical biogeography of the Andean region: evidence from listroderina (Coleoptera: Curculionidae: Rhytirrhinini) in the context of the South American geobiotic scenario. Biol J Linnean Soc 80:339–352

    Article  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions form occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ezcurra E (2006) Natural history and evolution of the world’s deserts. In: Ezcurra E (ed) Global deserts outlook. UNEP, Denmark, pp 2–26

    Google Scholar 

  • Game ET, Grantham HS (2008) Marxan user manual: for marxan version 1.8.10. Univ. of Queensland, St. Lucia, Queensland, Australia, and Pacific Marine Analysis and Research Association, Vancouver. (http://www.uq.edu.au/marxan/index.html)

  • Gaston KJ (1994) Rarity. Chapman and Hall, London

    Book  Google Scholar 

  • Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Applied Ecol 46:1–9

    Article  Google Scholar 

  • Gaston KJ, Rodrigues ASL, Van Rensburg BJ, Koleff P, Chown SL (2001) Complementary representation and zones of ecological transition. Ecol Lett 4:4–9

    Article  Google Scholar 

  • Gonzales JA (2009) Climatic change and other anthropogenic activities are affecting environmental services on the Argentina Northwest (ANW). Earth Environ Sci 6:1–2

    Google Scholar 

  • Gonzáles JA (2005) Los ambientes naturales en áreas montañosas del Noroeste Argentino (NOA), su interrelación con países limítrofes, recuperación y conservación. In: Serie Conservación de la Naturaleza, No. 15. Fundación Miguel Lillo, Tucumán

  • Grau RH, Gasparri IN, Aide MT (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ Conserv 32:140–148

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hernández-Hernández T, Hernandez HM, De-Nova AJ, Puente R, Eguiarte L, Magallón S (2011) Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Am J Bot 98:44–61

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis, A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. (http://www.worldclim.org)

    Google Scholar 

  • Ibisch PL, Beck SG, Gerkmann B, Carretero A (2003) Diversidad Biológica: Ecoregiones y ecosistemas. In: Ibisch P, Merida G (eds) Biodiversidad: La riqueza de Bolivia. Editorial FAN, Santa Cruz de la Sierra, Bolivia, pp 73–75

    Google Scholar 

  • Izquierdo AE, Grau HR (2009) Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina. J Environ Manage 90:858–865

    Article  PubMed  Google Scholar 

  • Jennings MD (2000) Gap analysis: concepts, methods, and recent results. Landsc Ecol 15:5–20

    Article  Google Scholar 

  • Kumar S, Stohlgren TJ (2009) Maxent modelling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol and Nat Environ 1:94–98

    Google Scholar 

  • Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW (2006) Global tests of biodiversity concordance and the importance of endemism. Nature 440:212–214

    Article  CAS  PubMed  Google Scholar 

  • Larrea-Alcázar DM, López RP, Quintanilla M, Vargas A (2010) Gap analysis of two savanna-type ecoregions: a two-scale floristic approach applied to the Llanos de Moxos and Beni Cerrado, Bolivia. Biodivers Conserv 19:1769–1783

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • López RP, Zambrana-Torrelio C (2006) Representation of Andean dry ecoregions in the protected areas of Bolivia: the situation in relation to the new phytogeographical findings. Biodivers Conserv 15:2163–2175

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  PubMed  Google Scholar 

  • Minetti JL (2005) El clima del noroeste argentino. San Miguel de Tucumán, Magna, p 449

    Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520

    Article  Google Scholar 

  • Mourelle C, Ezcurra E (1996) Species richness of Argentine cacti: a test of biogeographic hypotheses. J Veg Sci 7:667–680

    Article  Google Scholar 

  • Mourelle C, Ezcurra E (1997) Differentiation diversity of Argentine cacti and its relationship to environmental factors. J Veg Sci 8:547–558

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GBA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Navone S, Abraham E (2006) State and trends of the world’s deserts. In: Ezcurra E (ed) Global deserts outlook. UNEP, Denmark, pp 73–87

    Google Scholar 

  • Nhancale BA, Smith RJ (2011) The influence of planning unit characteristics on the efficiency and spatial pattern of systematic conservation planning assessments. Biodivers Conserv 20:1821–1835

    Article  Google Scholar 

  • Olson DM et al (2001) Terrestrial ecoregions of the World: a new map of life on Earth. BioSci 51:933–938

    Article  Google Scholar 

  • Orme CDL et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Baes P et al (2012) Intensive field surveys in conservation planning: priorities for cactus diversity in the Saltenian Calchaquíes Valleys (Argentina). J Arid Environ 82:91–97

    Article  Google Scholar 

  • Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Rev Mex de Biodivers 79:205–216

    Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Pearson RG (2007) Species distribution modeling for conservation educators and practitioners. Synthesis, Am Museum Nat Hist. (http://ncep.amnh.org)

  • Peterson TA, Watson DM (1998) Problems with areal definitions of endemism: the effects of spatial scaling. Divers Distrib 4:189–194

    Article  Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Reid WV (1998) Biodiversity hotspots. Trend Ecol Evol 13:275–280

    Article  CAS  Google Scholar 

  • Ricketts TH (2001) Aligning conservation goals: are patterns of species richness and endemism concordant at regional scales? Anim Biodivers Conserv 24:91–99

    Google Scholar 

  • Rodrigues ASL et al (2004a) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ASL et al (2004b) Global gap analysis: priority regions for expanding the global protected-area network. BioSci 54:1092–1100

    Article  Google Scholar 

  • Roig FA, Roig-Juñent S, Corbalán V (2009) Biogeography of the Monte Desert. J Arid Environ 73:164–172

    Article  Google Scholar 

  • Solano E, Feria PT (2007) Ecological niche modeling and geographic distribution of the genus Polianthes L. (Agavacea) in Mexico: using niche modeling to improve assessment of risk status. Biodiv Conserv 16:1885–1900

    Article  Google Scholar 

  • Swenson JJ et al (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol 12:1–18

    Article  PubMed Central  PubMed  Google Scholar 

  • Szumik C, Aagesen L, Casagranda D, Arzamendia V, Baldo D (2012) Detecting areas of endemism with a taxonomically diverse dataset: plants, mammals, reptiles, amphibians, birds and insects from Argentina. Cladistics 28:317–329

    Article  Google Scholar 

  • Villamil CB, De Villalobos AE, Scoffield RL (2009–2010) Plantas endémicas de Argentina. http://www.lista-planear.org. Accessed Jul–Jun 2012

  • Wieczorek J, Guo Q, Hijmans RJ (2004) The point-radius method for georeferencing locality descriptions and calculation associated uncertainty. Int J Geogr Inf Sci 18:745–767

    Article  Google Scholar 

  • Xu H, Wu J, Liu Y (2008) Biodiversity congruence and conservation strategies: a national test. BioSci 58:632–639

    Article  Google Scholar 

  • Young KR, Ulloa Ulloa C, Luteyn JL, Knapp S (2002) Plant evolution and endemism in Andean South America: an introduction. Bot Rev 68:4–21

    Article  Google Scholar 

  • Zuloaga FO, Morrone O, Rodriguez D (1999) Análisis de la biodiversidad en plantas vasculares de la Argentina. Kurtziana 27:17–167

    Google Scholar 

  • Zuloaga FO, Morrone, O, Belgrano MJ (2008) Catálogo de las Plantas Vasculares del Cono Sur. Monogr Syst Bot Missouri Bot Gard 107:609–967. (http://www2.darwin.edu.ar)

Download references

Acknowledgments

We wish to thank Dr. Fernando O. Zuloaga for helpful discussions and observations on earlier versions of this paper. We furthermore thank the Consejo Nacional de Investigaciones Científicas (CONICET) for provided financial support through a PhD grant for ACG-B. Finally to the Instituto de Botánica Darwinion (IBODA) for providing the software and place to develop the corresponding research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Godoy-Bürki.

Appendix

Appendix

See Appendix Table 2.

Table 2 Endemic species included in the present analyses (505 species) with their corresponding endemism area in the NOA region

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godoy-Bürki, A.C., Ortega-Baes, P., Sajama, J.M. et al. Conservation priorities in the Southern Central Andes: mismatch between endemism and diversity hotspots in the regional flora. Biodivers Conserv 23, 81–107 (2014). https://doi.org/10.1007/s10531-013-0586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0586-1

Keywords

Navigation