Skip to main content

Advertisement

Log in

Conservation of threatened relict trees through living ex situ collections: lessons from the global survey of the genus Zelkova (Ulmaceae)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Maintaining living ex situ collections is one of the key conservation methods in botanic gardens worldwide. Despite of the existence of many other conservation approaches used nowadays, it offers for many endangered plants an important insurance policy for the future, especially for rare and threatened relict trees. The aim of this research was to investigate the global extent of living ex situ collections, to assess and discuss their viability and inform the development of conservation approaches that respond to latest global conservation challenges. We used as a model taxon the tree genus Zelkova (Ulmaceae). The genus includes six prominent Tertiary relict trees which survived the last glaciation in disjunct and isolated refugial regions. Our comprehensive worldwide survey shows that the majority of botanic institutions with Zelkova collections are in countries with a strong horticultural tradition and not in locations of their origin. More importantly, the acutely threatened Zelkova species are not the most represented in collections, and thus safeguarded through ex situ conservation. Less than 20% of the ex situ collections surveyed contain plant material of known wild provenance while the majority (90%) of collections are generally very small (1–10 trees). Botanic gardens and arboreta particularly in regions where iconic relict trees naturally occur should play a vital role in the conservation of these species. The coordination of conservation efforts between gardens has to be enhanced to prioritise action for the most threatened relict trees. Large scale genetic studies should be undertaken, ideally at genus level, in order to verify or clarify the provenance of ex situ collections of relict trees in cultivation. For the most threatened relict tree genera, well-coordinated specialist groups should be created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahanjan M, Mohana DC, Raveesha KA, Azadbakht M (2007) Antibacterial potential of extracts of leaves of Parrotia persica. Afr J Biotechnol 6:2526–2528

    Google Scholar 

  • Anşin R, Gercek Z (1991) A new Zelkova taxon for the flora of Turkey: Zelkova carpinifolia (Pall.) C. Koch subsp. yamraensis Anşin & Gercek, subsp. nova. Doga. Turk J Agric For 15:564–575

    Google Scholar 

  • BGCI (2010) Botanic gardens conservation international. Global survey of ex situ Zelkova collections. http://www.bgci.org/files/survey-zelkova.pdf. Accessed April 2011

  • Bibalani GH, Majnonian B, Adeli E, Sanii H (2006) Slope stabilization with Gleditsia caspica and Parrotia persica. Int J Environ Sci Technol 2:381–385

    Google Scholar 

  • Browicz K, Zielinski J (1982) Chorology of trees and shrubs in south-west Asia and adjacent regions. Polish Academy of Sciences, Institute of Dendrology, Bogucki Wydawnictwo Naukowe, Poznan

  • Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Gaurino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity: technical guidelines. CAB International, Wallingford, pp 75–91

    Google Scholar 

  • Burney DA, Burney LP (2007) Paleoecology and “inter-situ” restoration on Kaui’a, Hawai’i. Front Ecol Environ 5:483–490

    Article  Google Scholar 

  • Burnham RJ (1986) Foliar morphological analysis of the Ulmoideae (Ulmaceae) from the early tertiary of western North America. Palaeontogr Abt B 201:135–167

    Google Scholar 

  • CBD (2011) Convention on biological diversity. http://www.cbd.int/decision/cop/?id=12283. Accessed April 2011

  • Chaw S-M, Parkinson CL, Cheng Y, Vincent TM, Palmer DJ (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms, and origin of Gnetales from conifers. Proc Natl Acad Sci 97:4086–4091

    Article  PubMed  CAS  Google Scholar 

  • Cochrane JA, Barrett S, Monks L, Dillon R (2010) Partnering conservation actions. Inter situ solutions to recover threatened species in South West Western Australia. Kew Bull 65:655–662

    Article  Google Scholar 

  • Cohen JI, Williams JT, Plucknett DL, Shands H (1991) Ex situ conservation of plant genetic resources: global development and environmental concerns. Science 253:866–872

    Article  PubMed  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Davis P (1982) Flora of Turkey and the East Aegean Islands. Edinburgh

  • Del Tredici J, Ling H, Yang G (1992) The Ginkgos of Tian Mu Shan. Conserv Biol 6:202–209

    Article  Google Scholar 

  • Denk T, Grimm GW (2005) Phylogeny and biogeography of Zelkova (Ulmaceae sensu stricto) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot J Linn Soc 147:129–157

    Article  Google Scholar 

  • Di Pasquale G, Garfi G, Quezél P (1992) Sur la présence d’un Zelkova nouveau en Sicile sudorientale (Ulmaceae). Biocosme Mésogéen 8–9:401–409

    Google Scholar 

  • Donaldson JS (2009) Botanic gardens science for conservation and global change. Trends Plant Sci 14:608–613

    Article  PubMed  CAS  Google Scholar 

  • Egli B (1993) Ökologie der Dolinen im Gebirge Kretas (Griechenland). PhD thesis, ETH Zürich

  • Egli B (1995) Zelkova abelicea (Lam.) Boiss. In: Phitos D, Strid A, Snogerup S, Greuter W (eds) The red data book of rare and threatened plants of Greece. K. Michalas WWF, Athens, pp 526–527

    Google Scholar 

  • Egli B (1997) A project for the preservation of Zelkova abelicea (Ulmaceae), a threatened endemic tree species from the mountains of Crete. Bocconea 5:505–510

    Google Scholar 

  • Ensslin A, Sandner TM, Matthies D (2011) Consequances of ex situ cultivation of plants: genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens. Biol Conserv 144:272–278

    Article  Google Scholar 

  • Etisham-Ul-Haq M, Allnutt TR, Smith-Ramirez C, Gardner MF, Armesto JJ, Newton AC (2001) Patterns of genetic variation in in and ex situ populations pf the threatened Chilean vine Berberidopsis carollina, detected using RAPD markers. Ann Bot 87:813–821

    Article  CAS  Google Scholar 

  • Fang Y, Liu S, Xiang J, Ge J (2007) Study on the natural population distribution of Zelkova schneideriana in Hubei. Res Environ Yangtze Basin 16:744

    Google Scholar 

  • Fernandez X, Lizzani-Cuvelier L, Loiseau A-M, Perichet C, Delbecque C, Arnaudo J-F (2005) Chemical composition of the essential oils from Turkish and Honduras Styrax. Flavour Fragr J 20:70–73

    Article  CAS  Google Scholar 

  • Fineschi S, Anzidei M, Cafasso D, Cozzolino S, Garfi G, Pastorelli R, Salvini D, Turchini D, Vendramin GG (2002) Molecular markers reveal a strong genetic differentiation between two European relic tree species: Zelkova abelicea (Lam.) Boissier and Z. sicula Di Pasquale, Garfi & Quézel (Ulmaceae). Conserv Gen 3:145–153

    Article  CAS  Google Scholar 

  • Garfì G (2006) Zelkova sicula. IUCN 2010. IUCN red list of threatened species. Version 2010.4. http://www.iucnredlist.org. Accessed Feb 2011

  • Garfì G, Barbero M, Tessier L (2002) Architecture and growth patterns of Zelkova sicula (Ulmaceae) in south-east Sicily as a response to environmental conditions. J Medit Ecol 3:65–76

    Google Scholar 

  • Garfì G, Carimi F, Pasta S, Rühl J, Trigila S (2011) Additional insights on the ecology of the relic tree Zelkova sicula di Pasquale, Garfi et Quétzal (Ulmaceae) after the finding of new population. Flora 206:407–417

    Article  Google Scholar 

  • Golding J, Güsewell S, Kreft H, Kuzevanov VY, Lehvävirta S, Parmantier I, Pautasso M (2010) Species-richness patterns of the living collections of the world’s botanic gardens: a matter of socio-economics? Ann Bot 105:689–696

    Article  PubMed  Google Scholar 

  • Guerrant EO Jr, Havens K, Maunder M (eds) (2004) Ex situ plant conservation. Supporting species survival in the wild. Island Press, Washington

    Google Scholar 

  • Güner A, Zielinski J (1998) Zelkova carpinifolia. IUCN 2010. IUCN red list of threatened species. Version 2010.4. http://www.iucnredlist.org. Accessed Feb 2011

  • Hu HH, Cheng WC (1948) On the new families Metasequoiaceae and on Metasequoia glyptostroboides, a living species of the genus Metasequoia found in Szechuang and Hupeh. Bull Fan Mem Inst Biol 1:153–163

    Google Scholar 

  • IUCN (2001) International Union for Conservation of Nature. Red List Categories and Criteria: Version 3.1. Gland, Switzerland. http://www.iucnredlist.org. Accessed Feb 2011

  • Iverson LR, Prasad AM (2001) Potential changes in tree species richness and forest community types following climate change. Ecosystems 4:186–199

    Article  CAS  Google Scholar 

  • Kvavadze EV, Connor SE (2005) Zelkova carpinifolia (Pallas) K. Koch in Holocene sediments of Georgia–an indicator of climatic optima. Rev Palaeobot Palynol 133:69–89

    Article  Google Scholar 

  • Ledig FT (1988) The conservation of diversity in forest trees. Why and how should genes be conserved? Bioscience 38:471–479

    Article  Google Scholar 

  • Li F, Xi N (2005) Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Bot Bull Acad Sin 46:155–162

    CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Mahvi AH, Nouri J, Omrani GA, Gholami F (2007) Application of Platanus orientalis leaves in removal of cadmium from aqueous solution. World App Sci J 2:40–44

    Google Scholar 

  • Mai DH (1995) Tertiäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. Gustav Fischer, Jena

  • Maunder M, Havens K, Guerrant EO Jr, Falk DA (2004) Ex situ methods: a vital but underused set of conservation resources. In: Guerrant EO Jr, Havens K, Maunder M (eds) Ex situ plant consetvation. Supporting species survival in the wild. Island Press, Washington, pp 3–20

    Google Scholar 

  • Melillo JM (1999) Climate change–warm, warm on the range. Science 283:183–184

    Article  CAS  Google Scholar 

  • Milne RI (2006) Northern Hemisphere plant disjunctions: a window on tertiary land bridges and climate change? Ann Bot 98:465–472

    Article  Google Scholar 

  • Milne RI, Abbott RJ (2002) The origin and evolution of tertiary relict floras. Adv Bot Res 38:281–314

    Article  Google Scholar 

  • Nakagawa T, Garfi G, Reille M, Verlaque R (1998) Pollen morphology of Zelkova sicula (Ulmaceae), a recently discovered relic species of the European Tertiary flora: description, chromosomal relevance, and palaeobotanical significance. Rev Palaeobot Palynol 100:27–37

    Article  Google Scholar 

  • Namoff S, Husby CE, Francisco-Ortega J, Noblick LR, Lewis CE, Griffith MP (2010) How well does a botanic garden collection of rare palm capture the genetic variation in a wild population? Biol Conserv 143:1110–1117

    Article  Google Scholar 

  • Oldfield SF (2009) Botanic gardens and the conservation of tree species. Trends Plant Sci 14:581–583

    Article  PubMed  CAS  Google Scholar 

  • Owens SJ, Rix M (2007) Franklinia alatamaha, Theaceae. Curtis’s Bot Mag 24:186–189

    Article  Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate change and tree phylogeography in the Mediterranean. Taxonomy 54:877–885

    Article  Google Scholar 

  • Phitos D, Strid A, Snogerup S, Greuter W (eds) (1995) The red data book of rare and threatened plants of Greece. K. Michalas WWF, Athens

    Google Scholar 

  • Powledge F (2011) The evolving role of botanical gardens. Bioscience 61:743–749

    Article  Google Scholar 

  • Quézel P, Médail F (2003) Ecologie et biogeography des forêts du bassin méditerranéen. Elsevier, Paris

    Google Scholar 

  • Rackham O, Moody J (1996) The making of the Cretan landscape. Manchester University Press, Manchester and New York

    Google Scholar 

  • Raimondo FM, Schicchi R (eds) (2005) Conservazione in situ ed ex situ di Abies nebrodensis (Lojac.) Mattei: progetto LIFE Natura no LIFE2000NAT/IT/7228—Petralia Sottana: Parco delle Madonie

  • Rucinska A, Puchalski J (2011) Comparative molecular studies on the genetic diversity of an ex situ garden collection and its source population of the critically endangered polish endemic plant Cochlearia polonica E. Fröhlich. Biodiv Conserv 20:401–413

    Article  Google Scholar 

  • Sadighara P, Ashrafihelan J, Barin A, Ali Esfahani T (2009) Histopathology and cholinergic assessment of Pterocarya fraxinifolia on chicken embryo. Interdiscip Toxicol 2:254–256

    Article  PubMed  Google Scholar 

  • Saporito L, De Carlo A, Emiliani G, Paffetti D, Vettori C, Giannini R (2009) Biodiversità e conservazione di specie forestali endemiche e relitte in Sicilia. Atti del Terzo Congresso Nazionale di Selvicoltura. Taormina, 16th–19th Oct 2008. Accademia Italiana di Scienze Forestali, Firenze, pp 265–270

  • Sefidi K, Marvie Mohadjer MR, Etemad V, Copenheaver CA (2011) Stand characteristics and distribution of relict population of Persian ironwood (Parrotia persica C.A. Meyer) in northern Iran. Flora 206:418–422

    Article  Google Scholar 

  • Sondergaard P, Egli BR (2006) Zelkova abelicea (Ulmaceae) in Crete: floristics, ecology, propagation and threats. Willdenowia 36:317–322

    Google Scholar 

  • Tang CQ, Yang Y, Ohsawa M, Momohara A, Hara M, Cheng S, Fan S (2011) Population structure of relict Metasequoia glyptostroboides and its habitat fragmentation and degradation in south-central China. Biol Conserv 144:279–289

    Article  Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN, Nageswara Rao M, Aravind NA (2002) Ecological consequences of forest use: from genes to ecosystems. A case study in the Iiligiri Rangaswamy Temple Wildlife Sanctuary, South India. Conserv Soc 22:347–363

    Google Scholar 

  • Volis S, Blecher M (2010) Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biol Conserv. doi:10.1007/s10531-010-9849-2

  • Wiegrefe SJ, Sytsma KJ, Guries RP (1998) The Ulmaceae, one family or two? Evidence from chloroplast DNA restriction site mapping. Plant Syst Evol 210:249–270

    Article  Google Scholar 

  • Wyse Jackson P, Kennedy K (2009) The global strategy for plant conservation: a challenge and opportunity for the international community. Trends Plant Sci 14:578–580

    Article  PubMed  CAS  Google Scholar 

  • Wyse Jackson P, Sutherland LA (2000) International agenda for botanic gardens in conservation. Botanic Gardens Conservation International, Richmond, pp 1–56

    Google Scholar 

  • Yang R-C, Yeh FC (1992) Genetic consequences if in situ and ex situ conservation of forest trees. Fores Chron 68:720–729

    Google Scholar 

  • Zhao Y, Paule J, Fu C, Koch MA (2010) Out of China: distribution history of Ginkgo biloba L. Taxonomy 59:495–504

    Google Scholar 

  • Zheng L, Zheng J, Zhao Y, Wang B, Wu L, Liang H (2006) Three anti-tumor saponins from Albizia julibrissin. Bioorg Med Chem Lett 16:2765–2768

    Article  PubMed  CAS  Google Scholar 

  • Zheng-yi W, Raven PH (2003) Zelkova. Flora of China. vol 5. Ulmaceae–Basellaceae. Missouri Botanical Garden Press, St. Louis, pp 10–11

    Google Scholar 

Download references

Acknowledgements

We are indebted to Fondation Franklinia for its generous support to undertake this study. We would also like to thank B. Clement, H. Castella and S. Bollinger from the Botanical Garden of the University of Fribourg (Switzerland) for their assistance during the manuscript preparation. Many botanic gardens around the world have provided data to the survey (see Appendix S2); their contributions are gratefully acknowledged. We would also like to acknowledge the assistance of the following organizations in the dissemination of the survey and the collection of data: American Public Gardens Association, Botanic Gardens Committee of the Chinese Academy of Sciences (CAS) and European Botanic Gardens Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Kozlowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1: Schematic distribution map of the six Zelkova species (PDF 133 kb)

10531_2011_207_MOESM2_ESM.pdf

Supplementary material 2: List of all botanic gardens and arboreta with Zelkova ex situ collections used in our survey (PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlowski, G., Gibbs, D., Huan, F. et al. Conservation of threatened relict trees through living ex situ collections: lessons from the global survey of the genus Zelkova (Ulmaceae). Biodivers Conserv 21, 671–685 (2012). https://doi.org/10.1007/s10531-011-0207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0207-9

Keywords

Navigation