Skip to main content

Advertisement

Log in

The impact of forest management on litter-dwelling invertebrates: a subtropical–temperate contrast

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Land use intensification in forests is a main driver of global biodiversity loss. Although historical state of land use differs between subtropical and temperate zones, gradients of land-use intensities similarly range from unmanaged to very intensively managed forests. Irrespective of similar land use forces in both climate zones, comparative studies on land use effects are still rare. Such studies are, however, promising in discovering more general impacts and geographical specifics of land use intensification. We studied litter-dwelling invertebrates along a gradient of increasing land use intensity in subtropical forests in Southern Brazil and temperate forests in Central Europe using similar sampling designs. Effects of land use intensity on the entire community were analyzed on the level of orders and feeding guilds. In both climate zones a similar number of individuals were caught when standardizes to 100 pitfall trap days, but taxa richness was higher in the subtropics. Moreover, community composition differed between both climate zones. In both regions, land use intensity did not affect taxa richness, but invertebrate abundance was affected in opposite ways; while increasing land use intensity resulted in a decrease of invertebrate abundance in the subtropics, an increase was observed in the temperate zone and this was mostly consistent regarding different feeding guilds. Management practices should take into account that the effect of land use intensity on biodiversity can differ drastically among climatic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrew NR, Hughes L (2005) Arthropod community structure along a latitudinal gradient: implications for future impacts of climate change. Austral Ecol 30:281–297

    Article  Google Scholar 

  • Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective logging in the Brazilian Amazon. Science 310:480–482

    Article  PubMed  CAS  Google Scholar 

  • Bacha CJC, Barros ALMB (2004) Reflorestamento no Brasil: evolução recente e perspectivas para o futuro. Sci For 66:191–203

    Google Scholar 

  • Backes A (1999) Condicionamento climático e distribuição geográfica de Araucaria angustifolia no Brasil. Pesquisas–Bot 49:31–51

    Google Scholar 

  • Baldi A (2003) Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl Ecol 4:589–593

    Article  Google Scholar 

  • Behling H, Pillar V, Orloic L, Bauermann S (2004) Late quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambara do Sul core in southern Brazil. Palaeogeogr palaeoclimatol palaeoecol 203:277–297

    Article  Google Scholar 

  • Bristot D (2008) O efeito da substituição da floresta com Araucária por monoculturas florestais sobre a decomposição de serrapilheira e a ciclagem de nutrientes. Universidade do Vale do Rio dos Sinos, Sao Leopoldo

    Google Scholar 

  • Castano-Meneses G, Palacios-Vargas JG (2003) Effects of fire and agricultural practices on neotropical ant communities. Biodivers Conserv 12:1913–1919

    Article  Google Scholar 

  • Chung MG, Epperson BK (2000) Clonal and spatial genetic structure in Eurya emarginata (Theaceae). Heredity 84:170–177

    Article  PubMed  Google Scholar 

  • Cyranoski D (2007) Biodiversity: logging: the new conservation. Nature 446:608–610

    Article  PubMed  CAS  Google Scholar 

  • Duelli P, Obrist MK, Schmatz DR (1999) Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric Ecosyst Environ 74:33–64

    Article  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Emer C, Fonseca CR (2011) Araucaria forest conservation: mechanisms providing resistance to invasion by exotic timber trees. Biol Invasion 13:189–202

    Article  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2010) Implementing largescale and longterm functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  • Fitzherbert E, Struebig M, Morel A, Danielsen F, Brühl C, Donald P, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545

    Article  PubMed  Google Scholar 

  • Fonseca CR, Prado PI, Almeida-Neto M, Kubota U, Lewinsohn TM (2005) Flower-heads, herbivores, and their parasitoids: food web structure along a fertility gradient. Ecol Entomol 30:36–46

    Article  Google Scholar 

  • Fonseca CR, Ganade G, Baldissera R, Becker CG, Boelter CR, Brescovit AD, Campos LM, Fleck T, Fonseca VS, Hartz SM, Joner F, Kaffer MI, Leal-Zanchet AM, Marcelli MP, Mesquita AS, Mondin CA, Paz CP, Petry MV, Piovensan FN, Putzke J, Stranz A, Vergara M, Vieira EM (2009a) Towards an ecologically-sustainable forestry in the Atlantic Forest. Biol Conserv 142:1209–1219

    Article  Google Scholar 

  • Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) (2009b) Floresta com Araucária: Ecologia, Conservação e Desenvolvimento Sustentável. Holos Editora, Ribeirão Preto

    Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  PubMed  CAS  Google Scholar 

  • Goehring DM, Daily GC, Sekercioglu CH (2002) Distribution of ground-dwelling arthropods in tropical countryside habitats. J Insect Conserv 6:83–91

    Article  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • INPE (2004) Monitoramento da floresta amazônica brasileira por satélite: Projeto Prodes. INPE, São José dos Campos, São Paulo. INPE (Instituto Nacional de Pesquisas Espaciais)

  • Jeanne RL (1979) A latitudinal gradient in rates of ant predation. Ecology 60:1211–1224

    Article  Google Scholar 

  • Kusnezov N (1957) Numbers of species of ants in faunae of different latitudes. Evolution 11:298–299

    Article  Google Scholar 

  • Lange M, Gossner M, Weisser WW (2011) Effect of pitfall trap type and diameter on vertebrate by-catches and ground beetle (Coleoptera: Carabidae) and spider (Araneae) sampling. Method Ecol Evol 2:185–190

    Article  Google Scholar 

  • Lindenmayer D, Franklin J (2002) Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, Washington

    Google Scholar 

  • Maass JM (1995) Conversion of tropical dry forest to pasture and agriculture. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 399–422

    Chapter  Google Scholar 

  • Mähler JKF Jr, Larocca JF (2009) Fitofisionomias, desmatamento e fragmentação da Floresta com Araucária. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: Ecologia, Conservação e Desenvolvimento Sustentável. Holos Editora, Ribeirão Preto

    Google Scholar 

  • Medianero E, Castano-Meneses G, Tishechkin A, Basset Y, Barrios H, Odegaard F, Cline AR, Bail J (2007) Influence of local illumination and plant composition on the spatial and seasonal distribution of litter-dwelling arthropods in a tropical rainforest. Pedobiologia 51:131–145

    Article  Google Scholar 

  • Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: Community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan

  • Paquette A, Messier C (2009) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34

    Article  Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity––a review of concepts. Am Nat 100:33–46

    Article  Google Scholar 

  • Price PW (2002) Resource-driven terrestrial interaction webs. Ecol Res 17:241–247

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rüther C, Walentowski H (2008) Tree species composition and historic changes of the Central European oak/beech region. In: Floren A, Schmidl J (eds) Canopy arthropod research in Europe. Bioform Entomology, Nürnberg, pp 61–88

  • Sala OE, Chapin SF III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff Le RN, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Schmitz PI (2009) Povos indígenas associados à Floresta com Araucária. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: Ecologia, Conservação e Desenvolvimento Sustentável. Holos Editora, Ribeirão Preto

    Google Scholar 

  • Schowalter TD (1995) Canopy invertebrate community response to disturbance and consequences of herbivory in temperate and tropical forest. Selbyana 16:41–48

    Google Scholar 

  • Schulze ED, Hessenmöller D, Seele C, Wäldchen J, von Lüpke N (2010) Die Buche. Biologie in unserer Zeit 40:171–183

    Article  Google Scholar 

  • Southwood TRE and Henderson PA (2000) Ecological methods. Blackwell Science, Oxford

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, Nat Environ Series 42:1–79

    Google Scholar 

  • Stanton NL (1979) Patterns of species-diversity in temperate and tropical litter mites. Ecology 60:295–304

    Article  Google Scholar 

  • Systat (2004) Systat 11: Statistics I, I and III. SPSS Inc, Chicago

    Google Scholar 

  • Takeda H, Abe T (2001) Templates of food-habitat resources for the organization of soil animals in temperate and tropical forests. Ecol Res 16:961–973

    Article  Google Scholar 

  • Williams PH, Gaston KJ (1994) Measuring more of biodiversity––can higher-taxon richness predict wholesale species richness. Biol Conserv 67:211–217

    Article  Google Scholar 

Download references

Acknowledgments

The work has been funded by DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (WE 2618/9-1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 479223/2006–8), and Universidade do Vale do Rio dos Sinos (UNISINOS). This collaboration was made possible by a joint grant (Probral) from the German Academic Exchange Service and the Brazilian Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Field work permits were given by the responsible state environmental offices of Thuringia (according to § 72 BbgNatSchG) and IBAMA. We thank Dominik Hessenmöller, Ernst-Detlef Schulze for providing forest inventory data; Sonja Gockel, Gabriele Zimmer, Carlos Guilherme Becker, Tomás Fleck, Claudia Seilwinder, Matthias Groß, Norbert Leber for logistic and technical support; Diober Borges Lucas and Ricardo Thormman Scherer for invertebrate identification; Markus Fischer, Elisabeth Kalko, Karl-Eduard Linsenmair, and Ernst-Detlef Schulze for setting up the biodiversity exploratory project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, M., Weisser, W.W., Gossner, M.M. et al. The impact of forest management on litter-dwelling invertebrates: a subtropical–temperate contrast. Biodivers Conserv 20, 2133–2147 (2011). https://doi.org/10.1007/s10531-011-0078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0078-0

Keywords

Navigation