Skip to main content

Advertisement

Log in

Collembola as bioindicators of restoration in mined sand dunes of Northeastern Brazil

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Opencast mining causes severe environmental impacts by removing the vegetation cover and depleting the fauna. Reforestation methods using native species and diverse pre- and post-disturbance approaches aim to recover the original richness and diversity of species found before the impact. Bioindicators are powerful tools to evaluate the restoration of the original environmental conditions in disturbed areas. We used species richness, endemism and diversity measurements of Collembola to compare successional stages in reforested sites of different ages compared with a control undisturbed area. Richness and abundance of Collembola were subjected to correlation analysis with age of plots and vegetational variables. Areas that were reforested for up to 16 years supported a much lower Collembola species richness than undisturbed areas. Both the age of reforestation plots and vegetation variables (number of trees, diameter of crowns, depth of leaf litter and tree species richness) were positively and significantly correlated to collembolan abundance and richness. The results showed that the diversity of the 16-year-old plot was significantly higher than that of younger areas, but significantly less diverse than that of the control area. Endemic species were more sensitive to disturbance than non-endemics. Thus, species richness and diversity of soil Collembola can be only partially restored with appropriate reforestation methods, and although it takes many years, to some extent even endemic species can be gradually restored. Nevertheless, the maintenance of undisturbed diversity reservoirs linked by ecological corridors to reforested plots is imperative, as only undisturbed areas can support most of the endemic species able to re-colonize reforested sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addison JA, Trofymow JA, Marshall VG (2003) Abundances, species diversity and community structure of collembola in successional coastal temperate forests on Vancouver island. Can Appl Soil Ecol 24:233–246. doi:10.1016/S0929-1393(03)00090-8

    Article  Google Scholar 

  • Andrés P, Mateos E (2006) Soil mesofaunal responses to post-mining restoration treatments. Appl Soil Ecol 33:67–78. doi:10.1016/j.apsoil.2005.08.007

    Article  Google Scholar 

  • Bardgett RD, Keiller S, Cook R, Gilburn AS (1998) Dynamic interpretations between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biol Biochem 30:531–539. doi:10.1016/S0038-0717(97)00146-6

    Article  CAS  Google Scholar 

  • Bellinger PF, Christiansen KA, Janssens F (2007) Checklist of the Collembola of the world. http://www.collembola.org. Accessed Dec 2007

  • Bellini BC, Zeppelini D (2004) First records of Collembola (Ellipura) from the State of Paraíba, Northeastern Brazil. Rev Bras Entomol 48(4):433–596. doi:10.1590/S0085-56262004000400025

    Article  Google Scholar 

  • Cassagne N, Gers C, Gauquelin T (2003) Relationships between Collembola, soil chemistry and humus types in forest stands (France). Biol Fertil Soils 37:355–361

    CAS  Google Scholar 

  • Chao A, Shen TJ (2003–2005) Program SPADE (species prediction and diversity estimation). Program and user’s guide published at http://chao.stat.nthu.edu.tw. Accessed Nov 2006

  • Cole L, Buckland SM, Bardgett RD (2005) Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biol Biochem 37:1707–1717. doi:10.1016/j.soilbio.2005.02.005

    Article  CAS  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5 persistent. www.purl.oclc.org/estimates. Accessed Nov 2006

  • Costa VH, Hernández MIM, Creão-Duarte AJ (2006) Avaliação fitossociológica do reflorestamento de dunas em Mataraca, Paraíba. Encontro Nacional de Gerenciamento Costeiro, Florianópolis, SC. http://www.agenciacosteira.org.br/downloads/resumos/ResumoValderezCostarevisado.doc. Accessed Dec 2007

  • Culik M, Zeppelini D (2003) Diversity and distribution of Collembola (Arthropoda: Hexapoda) of Brazil. Biol Conserv 12:1119–1143

    Google Scholar 

  • Deharveng L (1996) Soil Collembola diversity, endemism, and reforestation: a case study in the Pyrenees (France). Conserv Biol 10(1):74–84. doi:10.1046/j.1523-1739.1996.10010074.x

    Article  Google Scholar 

  • Detsis V, Diamantopoulos J, Kosmas C (2000) Collembolan assemblages in Lesvos, Greece. Effects of differences in vegetation and precipitation. Acta Oecol 21:149–159. doi:10.1016/S1146-609X(00)00110-7

    Article  Google Scholar 

  • Faber J (1992) Soil fauna stratification and decomposition of the pine litter. Febodruk, Enschede, p 131

    Google Scholar 

  • Greenslade P, Majer JD (1993) Recolonization by Collembola of rehabilitated bauxite mines in Western Australia. Aust J Ecol 18:385–394. doi:10.1111/j.1442-9993.1993.tb00466.x

    Article  Google Scholar 

  • Hole FD (1981) Effects of animals on soil. Geoderma 25:75–112. doi:10.1016/0016-7061(81)90008-2

    Article  Google Scholar 

  • Huhta V, Karppinen E, Nurminen M, Valpas A (1967) Effect of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil. Ann Zool Fenn 4:87–145

    Google Scholar 

  • Koppen W, Geiger R (1936) Handsbuch der klimatologie. Berlim, Gebruder Borntraeger

    Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Addison-Welsey, Menlo Park, p 620

    Google Scholar 

  • Krebs CJ, Kenney AJ (2000) Programs for ecological methodology, 2nd edn. University of British Columbia, Vancouver

    Google Scholar 

  • Kumssa DB, van Aarde RJ, Wassenaar TD (2004) The regeneration of soil micro-arthropod assemblages in a rehabilitating coastal dune forest at Richards Bay, South Africa. Afr J Ecol 42:346–354. doi:10.1111/j.1365-2028.2004.00537.x

    Article  Google Scholar 

  • Neumann FG (1991) Responses of litter arthropods to major natural or artificial ecological disturbances in mountain ash forests. Aust J Ecol 1:19–32

    Google Scholar 

  • Oliveira EP (1993) Influência de diferentes sistemas de cultivos na densidade populacional de invertebrados terrestres em solo de várzea de Amazônia Central. Amazoniana 12(3/4):495–508

    Google Scholar 

  • Oliveira-Filho AT, Carvalho DA (1993) Florística e fisionomia da vegetação do extremo norte do litoral da Paraíba. Rev Bras Bot 16(1):115–130

    Google Scholar 

  • Rosado SCS (2001) Revegetação de dunas degradadas no litoral norte da Paraíba, 28 pp. www.cemac-ufla.com.br/trabalhospdf/palestras/palestra%rosado.pdf. Accessed Jan 2007

  • Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biol Conserv 7:1207–1219. doi:10.1023/A:1008887817883

    Article  Google Scholar 

  • Salomon JA, Schaefer M, Alphei J, Schmid B, Scheu S (2004) Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos 106:51–60. doi:10.1111/j.0030-1299.2004.12905.x

    Article  Google Scholar 

  • Shear JA (1966) A set-theoretic view of the Koppen dry climates. Ann Assoc Am Geogr 56(3):508–515. doi:10.1111/j.1467-8306.1966.tb00575.x

    Article  Google Scholar 

  • StatSoft (2001) Statistica (data analysis software system), version 6. www.statsoft.com. Accessed 10 Oct 2001

  • St. John MG, Bagatto G, Behan-Pelletier V, Lindquist EE, Shorthouse JD, Smith IM (2002) Mite (Acari) colonization of vegetated mine tailings near Sudbury, Ontario, Canada. Plant Soil 245:295–305. doi:10.1023/A:1020453912401

    Article  CAS  Google Scholar 

  • van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suspension. Appl Soil Ecol 15:13–24. doi:10.1016/S0929-1393(00)00068-8

    Article  Google Scholar 

  • Webb NR (1994) Postfire succession of Cryptostigmatic mites (Acari, Cryptostigmata) in a calluna-heathland soil. Pedobiologia (Jena) 38(2):138–145

    Google Scholar 

Download references

Acknowledgments

This research project was funded by CNPq project # 507127/2004-8, with a grant to the senior author under the CNPq/DTI program, M.I.M. Hernández had a CAPES/PRODOC grant. Claudeci S. Silva provided data concerning planting on restored areas, Rodrigo A. Costa, Valderêz H. Costa, Rembrandt R.A.D. Rothéa helped in field work, Helder F. Araújo assisted with statistical analyses, Peter Iverson revised the English and L. Deharveng provided important comments and suggestions. Two anonymous referees greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Zeppelini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeppelini, D., Bellini, B.C., Creão-Duarte, A.J. et al. Collembola as bioindicators of restoration in mined sand dunes of Northeastern Brazil. Biodivers Conserv 18, 1161–1170 (2009). https://doi.org/10.1007/s10531-008-9505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9505-2

Keywords

Navigation