Skip to main content

Advertisement

Log in

Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The northern Andes harbour a flora that is as species-rich or even richer than the 18-times larger lowland Amazon basin. Gaining an understanding of how the high species richness of the Andean region is generated and maintained is therefore of particular interest. Environmental sorting due to elevational gradients in climate has been emphasized as a driver of vegetation distribution and plant community assembly in tropical mountain areas such as the Andes for two centuries, while alternative mechanisms have been little studied. Here, we investigated the importance of topography and spatial location as factors controlling species distributions in a palm community in a montane rain forest landscape in the Andes of southern Ecuador (1900–2150 m above sea level). Eleven species were present: Aiphanes verrucosa, Ceroxylon parvifrons, Chamaedorea pinnatifrons, Dictyocaryum lamarckianum, Euterpe precatoria, Geonoma densa, Geonoma orbignyana, Geonoma paradoxa, Prestoea acuminata and Wettinia aequatorialis. To study their spatial distribution, forty 250 m2 (5 × 50 m2) plots were laid out perpendicular to four paths that were categorized into three areas and two topographic units (ridges and gullies). Mantel tests and indicator species analysis showed that both topography and spatial location imposed strong controls on palm species distributions at the study site. Our results suggest that species distributions in the studied montane forest landscape were partly determined by the species’ habitat requirements, but also by unknown spatial effects. Although a number of possible explanations exist for the latter, such as unmeasured environmental variables and historical disturbance events, we believe dispersal limitation is likely to be involved. Furthermore, although the gully- or ridge-association of some species corresponded to their general elevational ranges in southern Ecuador, this was not the case for other species. Based on such considerations, we conclude that elevational climatic gradients are likely to only form part of the explanation for the topographic effects on palm species distributions at the study site. Other factors must also be involved, notably wind-exposure and hydrology, as discussed for lowland palm communities. Our results show that to understand plant community assembly in the tropical montane forests of the Andes it is too simple to focus just on environmental sorting by elevational climatic gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bachman S, Baker WJ, Brummitt N, Dransfield J, Moat J (2004) Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27:299–310. doi:10.1111/j.0906-7590.2004.03759.x

    Article  Google Scholar 

  • Balslev H (2002) Palmas austroecuatorianas. In: Aguirre MZ, Madsen JE, Cotton E, Balslev H (eds) Botánica Austroecuatoriana—Estudios Sobre los Recursos Vegetales en las Provincias de El Oro, Loja y Samora-Chinchipe. Ediciones Abya Yala, Quito, pp 107–135

    Google Scholar 

  • Borchsenius F, Skov F (1997) Ecological amplitudes of Ecuadorian palms. Principes 41:179–183

    Google Scholar 

  • Borchsenius F, Pedersen HB, Balslev H (1998) Manual to the palms of Ecuador. AAU report 37. Department of Systematic Botany. University of Aarhus. Aarhus University Press, Aarhus

    Google Scholar 

  • Bussmann R (2001) The montane forests of Reserva Biológica San Francisco (Zamora-Chinchipe, Ecuador)—vegetation zonation and natural regeneration. Erde 132:9–25

    Google Scholar 

  • Bussmann R (2003) The vegetation of Reserva Biológica San Francisco, Zamora-Chinchipe, southern Ecuador—a phytosociological synthesis. Lyonia 3:145–254

    Google Scholar 

  • Clark DA, Clark DB, Sandoval R, Castro MV (1995) Edaphic and human effects on landscape-scale distributions of tropical rain-forest palms. Ecology 76:2581–2594. doi:10.2307/2265829

    Article  Google Scholar 

  • Clark JS, Silman M, Kern R, Macklin E, Hillerislambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494

    Article  Google Scholar 

  • Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, Foster RB et al (2002) Beta-diversity in tropical forest trees. Science 295:666–669. doi:10.1126/science.1066854

    Article  PubMed  CAS  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34. doi:10.2307/2399464

    Article  Google Scholar 

  • Grubb PJ, Whitmore TC (1966) A comparison of montane and lowland rain forest in Ecuador. II. The climate and its effects on the distribution and physiognomy of the forest. J Ecol 54:303–333. doi:10.2307/2257951

    Article  Google Scholar 

  • Grubb PJ, Lloyd JR, Pennington TD, Whitmore TC (1963) A comparison of montane and lowland rain forest in Ecuador. I. The forest structure, physiognomy, and floristics. J Ecol 51:567–601. doi:10.2307/2257748

    Article  Google Scholar 

  • Henderson A (1990) Flora Neotropica, monograph 53: Arecaceae. Part I. Introduction and the Iriarteinae. The New York Botanical Garden, New York, USA

    Google Scholar 

  • Henderson A, Churchill SP, Luteyn JL (1991) Neotropical plant diversity. Nature 351:21–22. doi:10.1038/351021e0

    Article  Google Scholar 

  • Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, Princeton

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Monographs in population biology 32. Princeton University Press, Princeton

    Google Scholar 

  • Jones MM, Tuomisto H, Clark DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195. doi:10.1111/j.1365-2745.2005.01071.x

    Article  CAS  Google Scholar 

  • Kahn F (1987) The distribution of palms as a function of local topography in Amazonian terra-firme forests. Experientia 43:251–259. doi:10.1007/BF01945548

    Article  Google Scholar 

  • Kahn F, de Castro A (1985) The palm community in a forest of Central Amazonia, Brazil. Biotropica 17:210–216. doi:10.2307/2388221

    Article  Google Scholar 

  • Kessler M (2000) Upslope-directed mass effect in palms along and Andean elevational gradient: a cause for high diversity at mid-elevations? Biotropica 32:756–759. doi:10.1646/0006-3606(2000)032[0756:UDMEIP]2.0.CO;2

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Second english edition. Elsevier, Amsterdam

    Google Scholar 

  • Legendre P, Vaudor A (1991) The R-package. Départment de Sciences Biologiques. Université de Montreal, Canada

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152. doi:10.2307/2261350

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13. doi:10.1046/j.1466-822x.2001.00229.x

    Article  Google Scholar 

  • Madsen JE, Øllgaard B (1994) Floristic composition, structure, and dynamics of an upper montane rain forest in Southern Ecuador. Nord J Bot 14:403–423. doi:10.1111/j.1756-1051.1994.tb00626.x

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD MjM software. Gleneden Beach, Oregon, USA

    Google Scholar 

  • Moraes M, Galeano G, Bernal R, Balslev H, Henderson A (1995) Tropical Andean palms (Arecaceae). In: Churchill SP, Balslev H, Luteyn JL, Forero E (eds) Biodiversity and conservation. Neotropical montane forests. The New York Botanical Garden, New York, pp 473–487

    Google Scholar 

  • Murray KG (1988) Avian seed dispersal of three neotropical gap-dependent plants. Ecol Monogr 58:271–298. doi:10.2307/1942541

    Article  Google Scholar 

  • Niemann H, Behling H (2008) Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes. J Quat Sci 23:203–212. doi:10.1002/jqs.1134

    Article  Google Scholar 

  • Normand S, Vormisto J, Svenning J-C, Grández C, Balslev H (2006) Geographical and environmental controls of palm beta diversity in paleo-riverine terrace forests in Amazonian Peru. Plant Ecol 186:161–176. doi:10.1007/s11258-006-9120-9

    Article  Google Scholar 

  • Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEP, Sanchez WG et al (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775. doi:10.1046/j.1365-2745.2003.00815.x

    Article  Google Scholar 

  • Rahbek C, Grave GR (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci USA 98:4534–4539. doi:10.1073/pnas.071034898

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero A, Hawkins BA (2008) Why do mountains support so many species of birds? Ecography 31:306–315. doi:10.1111/j.0906-7590.2008.05333.x

    Article  Google Scholar 

  • Sezen UU, Chazdon RL, Holsinger KE (2005) Genetic consequences of tropical second-growth forest regeneration. Science 307:891. doi:10.1126/science.1105034

    Article  PubMed  CAS  Google Scholar 

  • Svenning J-C (1999a) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. J Ecol 87:55–65. doi:10.1046/j.1365-2745.1999.00329.x

    Article  Google Scholar 

  • Svenning J-C (1999b) Recruitment of tall arborescent palms in the Yasuní National Park, Amazonian Ecuador: are large treefall gaps important? J Trop Ecol 15:355–366. doi:10.1017/S0266467499000875

    Article  Google Scholar 

  • Svenning J-C (2001a) Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). J Trop Ecol 17:97–113. doi:10.1017/S0266467401001067

    Article  Google Scholar 

  • Svenning J-C (2001b) On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot Rev 67:1–53

    Article  Google Scholar 

  • Svenning J-C, Balslev H (1998) The palm flora of the Maquipucuna montane forest reserve, Ecuador. Principes 42:218–226

    Google Scholar 

  • Svenning J-C, Kinner DA, Stallard RF, Engelbrecht BMJ, Wright SJ (2004) Ecological determinism in plant community structure across a tropical forest landscape. Ecology 85:2526–2538. doi:10.1890/03-0396

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A (2003a) Floristic patterns along a 43-km long transect in an Amazonian rain forest. J Ecol 91:743–756. doi:10.1046/j.1365-2745.2003.00802.x

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003b) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244. doi:10.1126/science.1078037

    Article  PubMed  CAS  Google Scholar 

  • von Humboldt A (1807) Essai sur la geographie de plantes. Paris

  • Vormisto J, Svenning J-C, Hall P, Balslev H (2004a) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J Ecol 92:577–588. doi:10.1111/j.0022-0477.2004.00904.x

    Article  Google Scholar 

  • Vormisto J, Tuomisto H, Oksanen J (2004b) Palm distribution patterns in Amazonian rainforests: what is the role of topographic variation? J Veg Sci 15:485–494. doi:10.1658/1100-9233(2004)015[0485:PDPIAR]2.0.CO;2

    Article  Google Scholar 

  • Zona S, Henderson A (1989) A review of animal-mediated seed dispersal of palms. Selbyana 11:6–21

    Google Scholar 

Download references

Acknowledgements

At Estacion Cientifica San Francisco Jürgen Homeier and Felix Matt provided invaluable help for the sampling. The Faculty of Sciences of the University of Aarhus provided travel grants to DH and MMS. Our work on palms is supported by the Danish Natural Science Research Council with grants to HB (272-06-0476) and JCS (21-01-0415; 21-04-0346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Christian Svenning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svenning, JC., Harlev, D., Sørensen, M.M. et al. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador. Biodivers Conserv 18, 219–228 (2009). https://doi.org/10.1007/s10531-008-9468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9468-3

Key words

Navigation