Skip to main content

Advertisement

Log in

Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Tree and stand level variables affecting the species richness, cover and composition of epiphytic lichens on temperate broad-leaved trees (Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra, and U. laevis) were analysed in floodplain forest stands in Estonia. The effect of tree species, substrate characteristics, and stand and regional variables were tested by partial canonical correspondence analysis (pCCA) and by general linear mixed models (GLMM). The most pronounced factors affecting the species richness, cover and composition of epiphytic lichens are acidity of tree bark, bryophyte cover and circumference of tree stems. Stand level characteristics have less effects on the species richness of epiphytic lichens, however, lichen cover and composition was influenced by stand age and light availability. The boreo-nemoral floodplain forests represent valuable habitats for epiphytic lichens. As substrate-related factors influence the species diversity of lichens on temperate broad-leaved trees differently, it is important to consider the effect of each tree species in biodiversity and conservation studies of lichens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DB, Risser PG (1971) Some factors influencing the frequency of bark lichens in north central Oklahoma. Am J Bot 58:752–757. doi:10.2307/2441473

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Aude E, Poulsen RS (2000) Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forests. Appl Veg Sci 3:81–88. doi:10.2307/1478921

    Article  Google Scholar 

  • Axelsson AL, Östlund L (2001) Retrospective gap analysis in a Swedish boreal forest landscape using historical data. For Ecol Manage 147:109–122

    Article  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Bates JW (1992) Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. J Ecol 80:163–179. doi:10.2307/2261073

    Article  Google Scholar 

  • Bates JW, Brown DH (1981) Epiphyte differentiation between Quercus petraea and Fraxinus excelsior trees in a maritime area of South West England. Vegetatio 48:61–70. doi:10.1007/BF00117362

    Article  Google Scholar 

  • Belinchón R, Martínez I, Escudero A et al (2007) Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. J Veg Sci 18:81–90. doi:10.1658/1100-9233(2007)18[81:EEOECI]2.0.CO;2

    Article  Google Scholar 

  • Berg Å, Gärdenfors U, Hallingbäck T et al (2002) Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden—analyses of data from a national survey. Biodivers Conserv 11:1479–1503. doi:10.1023/A:1016271823892

    Article  Google Scholar 

  • Boudreault C, Gauthier S, Bergeron Y (2000) Epiphytic lichens and bryophytes on Populus tremuloides along a chronosequence in the southwestern boreal forest of Quebec, Canada. Bryologist 103:725–738. doi:10.1639/0007-2745(2000)103[0725:ELABOP]2.0.CO;2

    Article  Google Scholar 

  • Brodo IM (1961) A study of lichen ecology in central Long Island, New York. Am Midl Nat 65:290–310. doi:10.2307/2422957

    Article  Google Scholar 

  • Brodo IM (1973) Substrate ecology. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 401–441

    Google Scholar 

  • Brown PM, Cook B (2006) Early settlement forest structure in Black Hills ponderosa pine forests. For Ecol Manage 1–3:284–290

    Article  Google Scholar 

  • Burgaz AR, Fuertes E, Escudero A (1994) Ecology of cryptogamic epiphytes and their communities in deciduous forests in mediterranean Spain. Vegetatio 112:73–86. doi:10.1007/BF00045101

    Article  Google Scholar 

  • Cáceres MES, Lücking R, Rambold G (2007) Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rain forest of northeastern Brazil. Mycol Prog 6:117–136. doi:10.1007/s11557-007-0532-2

    Article  Google Scholar 

  • Coote L, Smith GF, Kelly DL et al (2007) Epiphytes of Sitka spruce (Picea sitchensis) plantations in Ireland and the effects of open spaces. Biodivers Conserv 16:4009–4024. doi:10.1007/s10531-007-9203-5

    Article  Google Scholar 

  • Culberson WL (1955) The corticolous communities of lichens and bryophytes in the upland forests of northern Wisconsin. Ecol Monogr 25:215–231. doi:10.2307/1943551

    Article  Google Scholar 

  • Diekmann M (1994) Deciduous forest vegetation in Boreo-nemoral Scandinavia. Acta Phytogeogr Suec 80:1–112

    Google Scholar 

  • Diekmann M (1996) Ecological behaviour of deciduous hardwood trees in Boreo-nemoral Sweden in relation to light and soil conditions. For Ecol Manag 86:1–14

    Article  Google Scholar 

  • Du Rietz GE (1945) Om fattigbark-och rikbarksamhällen. Sven Bot Tidskr 39:147–150

    Google Scholar 

  • EC (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Community L206:7–50

    Google Scholar 

  • Ellenberg H (1979) Zeigerwerte der Gefässpflanzen Mitteleuropas, 2nd edn. Scripta Geobot 9:1–121

    Google Scholar 

  • Ellis CJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33:1643–1656. doi:10.1111/j.1365-2699.2006.01522.x

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ (2007a) 19th century woodland structure controls stand-scale epiphyte diversity in present-day Scotland. Divers Distrib 13:84–91

    Google Scholar 

  • Ellis CJ, Coppins BJ (2007b) Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 39:377–391. doi:10.1017/S0024282907006937

    Article  Google Scholar 

  • Emborg J (1998) Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. For Ecol Manage 106:83–95

    Article  Google Scholar 

  • Esseen P-A, Ehnström B, Ericson L et al (1997) Boreal forests. Ecol Bull 46:16–47

    Google Scholar 

  • Farmer AM, Bates JW, Bell JNB (1991) Comparisons of three woodland sites in NW Britain differing in richness of the epiphytic Lobarion pulmonariae community and levels of wet acidic deposition. Holarct Ecol 14:85–91

    Google Scholar 

  • Frahm J-P (2003) Climatic habitat differences of epiphytic lichens and bryophytes. Cryptogam Bryol 24:3–14

    Google Scholar 

  • Giordani P (2006) Variables influencing the distribution of epiphytic lichens in heterogeneous areas: a case study for Liguria, NW Italy. J Veg Sci 17:195–206. doi:10.1658/1100-9233(2006)17[195:VITDOE]2.0.CO;2

    Article  Google Scholar 

  • Gustafsson L, Eriksson I (1995) Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. J Appl Ecol 32:412–424. doi:10.2307/2405107

    Article  Google Scholar 

  • Hager H, Schume H (2001) The floodplain forests along the Austrian Danube. In: Klimo E, Hager H (eds) The floodplain forests in Europe. Current situation and perspectives. European Forest Institute Research Report 10, Brill, Leiden, pp 83–100

  • Hawksworth DL (2002) Bioindication: calibrated scales and their utility. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Proceedings of the NATO advanced research workshop on lichen monitoring, Wales, United Kingdom, 16–23 August 2000. Nato science series IV: earth and environmental sciences, vol 7. Kluwer Academic Publishers, Dordrecht, pp 11–20

  • Hedenås H, Ericson L (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biol Conserv 93:43–53. doi:10.1016/S0006-3207(99)00113-5

    Article  Google Scholar 

  • Hong WS, Glime JM (1997) Comparison of phorophyte communities on three major tree species on Ramsay Island, Queen Charlotte Islands, Canada: bryophyte vs lichen dominance. Lindbergia 22:21–30

    Google Scholar 

  • Humphrey JW, Davey S, Peace AJ et al (2002) Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol Conserv 107:165–180. doi:10.1016/S0006-3207(02)00057-5

    Article  Google Scholar 

  • Hyvärinen M, Halonen P, Kauppi M (1992) Influence of stand age and structure on the epiphytic lichen vegetation in the middle-boreal forests of Finland. Lichenologist 24:165–180

    Google Scholar 

  • Insarov G, Schroeter B (2002) Lichen monitoring and climate change. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Proceedings of the NATO advanced research workshop on lichen monitoring, Wales, United Kingdom, 16–23 August 2000. Nato science series IV: earth and environmental sciences, vol 7. Kluwer Academic Publishers, Dordrecht, pp 183–201

  • Johansson P, Rydin H, Thor G (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14:81–91. doi:10.2980/1195-6860(2007)14[81:TARWEL]2.0.CO;2

    Article  Google Scholar 

  • Jovan S, McCune B (2004) Regional variation in epiphytic macrolichen communities in northern and central California forests. Bryologist 107:328–339. doi:10.1639/0007-2745(2004)107[0328:RVIEMC]2.0.CO;2

    Article  Google Scholar 

  • Jüriado I (2007) Diversity of lichen species in Estonia: influence of regional and local factors. Dissertationes Biologicae Universitatis Tartuensis, vol 131. Tartu University Press, Tartu, pp 1–170

    Google Scholar 

  • Jüriado I, Paal J, Liira J (2003) Epiphytic and epixylic lichen species diversity in Estonian natural forests. Biodivers Conserv 12:1587–1607. doi:10.1023/A:1023645730446

    Article  Google Scholar 

  • Kantvilas G, Jarman SJ (2004) Lichens and bryophytes on Eucalyptus obliqua in Tasmania: management implications in production forests. Biol Conserv 117:359–373. doi:10.1016/j.biocon.2003.08.001

    Article  Google Scholar 

  • Keskkonnaministri määrus nr 51 (2004) III kaitsekategooria liikide kaitse alla võtmine (Decree of Estonian Minister of Environment no. 51. 19.05.2004). Riigi Teataja Lisa 27.05.2004, 69:1134

  • Klimo E, Hager H (2001) Executive summary. In: Klimo E, Hager H (eds) The floodplain forests in Europe. Current situation and perspectives. European Forest Institute Research Report 10. Brill, Leiden, pp vii–xi

  • Kricke R (2002) Measuring bark pH. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Proceedings of the NATO advanced research workshop on lichen monitoring, Wales, United Kingdom, 16–23 August 2000. Nato science series IV: earth and environmental sciences, vol 7. Kluwer Academic Publishers, Dordrecht, pp 333–336

  • Kuusinen M (1995) Epiphytic lichen diversity on Salix caprea and Populus tremula in old-growth forests of Finland. In: Scheidegger C, Wolseley PA, Thor G (eds) Conservation biology of lichenised fungi. Mitt Eidgenöss Forsch anst Wald, Schnee Landsc, vol 70. Birmensdorf, pp 125–132

  • Kuusinen M (1996) Epiphyte flora and diversity on basal trunks of six old-growth forest tree species in southern and middle boreal Finland. Lichenologist 28:443–463. doi:10.1006/lich.1996.0043

    Article  Google Scholar 

  • Laasimer L, Masing V (1995) Taimestik ja taimkate. In: Raukas A (ed) Eesti Loodus. Valgus & Eesti Entsüklopeediakirjastus, Tallinn, pp 364–401

    Google Scholar 

  • Leht M (ed) (2007) Eesti taimede määraja. EMÜ Põllumajandus- ja keskkonnainstituut, Eesti Loodusfoto, Tartu

    Google Scholar 

  • Liira J, Sepp T, Parrest O (2007) The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. For Ecol Manage 250:34–46

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW et al (1996) SAS® system for mixed models. SAS Institute Inc, Cary

    Google Scholar 

  • Lõhmus A (2002) The lack of old-growth forest—a threat to Estonian biodiversity. Proc Estonian Acad Sci Biol Ecol 51:138–144

    Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182. doi:10.1111/j.2006.0906-7590.04348.x

    Article  Google Scholar 

  • McCune B (1993) Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411. doi:10.2307/3243870

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD multivariate analysis of ecological data, version 4. Mjm Software Design, Gleneden Beach

    Google Scholar 

  • McCune B, Dey J, Peck J et al (1997) Regional gradients in lichen communities of the southeast United States. Bryologist 100:145–158

    Google Scholar 

  • Meier E, Paal J, Liira J, Jüriado I (2005) Influence of tree stand age and management on the species diversity in Estonian eutrophic alvar and boreonemoral Pinus sylvestris forests. Scand J For Res 20:135–144. doi:10.1080/14004080510042155

    Article  Google Scholar 

  • Mielke PW Jr (1984) Meteorological applications of permutation techniques based on distance functions. In: Krishnaiah PR, Sen PK (eds) Handbook of statistics, vol 4. Elsevier Science Publishers, New York, pp 813–830

    Google Scholar 

  • Mistry J, Berardi A (2005) Effects of phorophyte determinants on lichen abundance in the cerrado of central Brazil. Plant Ecol 178:61–76. doi:10.1007/s11258-004-2493-8

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  • Moe B, Botnen A (1997) A quantitative study of the epiphytic vegetation on pollarded trunks of Fraxinus excelsior at Havrå Osterøy, western Norway. Plant Ecol 129:157–177. doi:10.1023/A:1009720132726

    Article  Google Scholar 

  • Nilsson C (1992a) Conservation management of riparian communities. In: Hansson L (ed) Ecological principles of nature conservation. Conservation ecology series: principles, practices and management. Elsevier Applied Science, London, pp 352–372

    Google Scholar 

  • Nilsson SG (1992b) Forests in the temperate-boreal transition—natural and man-made features. In: Hansson L (ed) Ecological principles of nature conservation. Conservation ecology series: principles, practices and management. Elsevier Applied Science, London, pp 373–393

    Google Scholar 

  • Oksanen J (1988) Impact of habitat, substrate and microsite classes on the epiphyte vegetation: interpretation using exploratory and canonical correspondence analysis. Ann Bot Fenn 25:59–71

    Google Scholar 

  • Paal J, Rooma I, Jeletsky E-M (2006) Typology and soils of the Estonian floodplain forests. In: Kurm M (ed) Forestry studies, vol 44. Eesti Loodusfoto, Tartu, pp 20–41

    Google Scholar 

  • Paal J, Rannik R, Jeletsky E-M et al (2007) Floodplain forests in Estonia: typological diversity and growth conditions. Folia Geobot 42:383–400. doi:10.1007/BF02861701

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ (2002) The association between substrate variability and bryophyte and lichen diversity in eastern Australian forests. Bryologist 105:11–26. doi:10.1639/0007-2745(2002)105[0011:TABSVA]2.0.CO;2

    Article  Google Scholar 

  • Price K, Hochachka G (2001) Epiphytic lichen abundance: effects of stand age and composition in coastal British Columbia. Ecol Appl 11:904–913. doi:10.1890/1051-0761(2001)011[0904:ELAEOS]2.0.CO;2

    Article  Google Scholar 

  • Pykälä J (2004) Effects of new forestry practices on rare epiphytic macrolichens. Conserv Biol 18:831–838. doi:10.1111/j.1523-1739.2004.00210.x

    Article  Google Scholar 

  • Randlane T, Saag A (eds) (1999) Second checklist of lichenized, lichenicolous and allied fungi of Estonia. Folia Cryptog Estonica 35:1–132

  • Randlane T, Saag A, Suija A (2007) Lichenized, lichenicolous and allied fungi of Estonia. http://www.ut.ee/lichens/fce.html. Cited 11 Nov 2007

  • Randlane T, Jüriado I, Suija A et al (2008) Lichens in the new red data list of Estonia. Folia Cryptog Estonica 44:113–120

    Google Scholar 

  • Ranius T, Johansson P, Berg N et al (2008) The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J Veg Sci 19:653–662

    Article  Google Scholar 

  • Rose F (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 211–233

    Google Scholar 

  • Sander E (1999) Comparison of the lichen flora of different broad-leaved trees in Estonia. Folia Cryptog Estonica 34:65–69

    Google Scholar 

  • SAS Institute Inc (1989) SAS/STAT® user’s guide, ver 6, vol 2, 4th edn. SAS Institute Inc, Cary

    Google Scholar 

  • Schmidt J, Kricke R, Feige GB (2001) Measurements of bark pH with a modified flathead electrode. Lichenologist 33:456–460. doi:10.1006/lich.2001.0341

    Article  Google Scholar 

  • Shao J (1997) An asymptotic theory for linear model selection. Stat Sin 7:221–264

    Google Scholar 

  • Sõmermaa A (1972) Ecology of epiphytic lichens in main Estonian forest types. Scr Mycol 4:1–117

    Google Scholar 

  • StatSoft, Inc (2005) Statistica for windows, ver 7.1. StatSoft, Inc, Tulsa

    Google Scholar 

  • ter Braak CJF (1988) Partial canonical correspondence analysis. In: Bock HH (ed) Classification and related methods of data analysis. Elsevier Science Publisher, Amsterdam, pp 551–558

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Biometris, Wageningen

    Google Scholar 

  • Thor G (1998) Red-listed lichens in Sweden: habitats, threats, protection, and indicator value in boreal coniferous forests. Biodivers Conserv 7:59–72. doi:10.1023/A:1008807729048

    Article  Google Scholar 

  • Vabariigi Valitsuse määrus nr 195 (2004) I ja II kaitsekategooriana kaitse alla võetavate liikide loetelu (Decree of the Estonian Government no. 195. 20.05.2004). Riigi Teataja I 21.05.2004, 44:313

  • Will-Wolf S, Esseen P-A, Neitlich P (2002) Monitoring biodiversity and ecosystem function: forests. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Proceedings of the NATO advanced research workshop on lichen monitoring, Wales, United Kingdom, 16–23 August 2000. Nato science series IV: earth and environmental sciences, vol 7. Kluwer Academic Publishers, Dordrecht, pp 203–222

  • Will-Wolf S, Geiser LH, Neitlich P et al (2006) Forest lichen communities and environment—how consistent are relationships across scales? J Veg Sci 17:171–184. doi:10.1658/1100-9233(2006)17[171:FLCAEC]2.0.CO;2

    Article  Google Scholar 

  • Yarraton GA (1972) Distribution and succession of epiphytic lichens on black spruce near Cochrane, Ontario. Bryologist 75:462–480. doi:10.2307/3241203

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the administration of the Alam-Pedja Nature Reserve, to M. Suurkask from the Soomaa National Park, and to the family Kose for kind help during field work. Special thanks belong to M. Otsus, E. M. Jeletsky, T. Niitla and K. Sasi for the assistance in field work, and to L. Saag and P. Lõhmus for determining and verifying some of the specimens. We are grateful to T. Randlane and anonymous reviewers for valuable comments to the manuscript. We thank E. Jaigma for improving the English text of the manuscript. Financial support was received from the Estonian Science Foundation (grants No. 5494) and from the Estonian Ministry of Education and Research (targeted financing Nos. SF0182639s04, SF0180153s08 and SF0180098s08). This research was also supported by the European Union through the European Regional Development Fund and by the Archimedes Foundation (grant RLOOMTIPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Jüriado.

Additional information

Nomenclature Randlane et al. (2007) for lichens; Leht (2007) for vascular plants.

Appendices

Appendices

Appendix 1 Environmental variables employed in data analysis
Appendix 2 List of the recorded lichen species

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüriado, I., Liira, J., Paal, J. et al. Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodivers Conserv 18, 105–125 (2009). https://doi.org/10.1007/s10531-008-9460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9460-y

Keywords

Navigation