Skip to main content

Advertisement

Log in

Non-native ungulates indirectly impact foliar arthropods but not soil function

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

One of the greatest challenges in contemporary ecology is to understand how the homogenization of biodiversity at all levels of organization and spatial scales will influence the assembly of communities and the functioning of ecosystems. Such homogenization can occur through the gain of non-native species and the loss of native species. Here, we show that by disrupting a keystone mutualistic interaction, non-native ungulates indirectly impact foliar arthropod abundance and richness, but not soil properties (soil respiration, temperature and humidity), in a temperate forest of Patagonia. The results of this study show that the gain of non-native ungulates and the loss of a key interaction can trigger unnoticed cascading effects. Our findings highlight the importance of assessing biodiversity not only as the sum of different components but also through the direct and indirect interactions among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizen MA (2003) The relative influence of animal pollination and seed dispersal on flowering time in a winter flowering mistletoe. Ecology 84:2613–2627

    Article  Google Scholar 

  • Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualisms in the woody flora of the temperate forest of southern South America: biogeographical origin and present ecological significance. Ecol Austral 8:217–236

    Google Scholar 

  • Allison SD (2006) Brown ground: a soil carbon analogue for the green world hypothesis? Am Nat 167:619–627

    Article  PubMed  Google Scholar 

  • Amico GC, Aizen MA (2000) Ecology: mistletoe seed dispersal by a marsupial. Nature 408:929

    Article  CAS  PubMed  Google Scholar 

  • Amico GC, Rodriguez-Cabal MA, Aizen MA (2009) The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecol 35:8–13

    Article  Google Scholar 

  • Armesto J, Rozzi R (1989) Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest. J Biogeogr 16(3):219–226

    Article  Google Scholar 

  • Bailey JK, Whitham TG (2002) Interactions among fire, aspen, and elk affect insect diversity: reversal of a community response. Ecology 83:1701–1712

    Article  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Barrios-Garcia MN, Relva MA, Kitzberger T (2012) Patterns of use and damage by exotic deer on native plant communities in northwestern Patagonia. Eur J Wildl Res 58:137–146

    Article  Google Scholar 

  • Borer ET, Halpern BS, Seabloom EW (2006) Asymmetry in community regulation: effects of predators and productivity. Ecology 87:2813–2820

    Article  PubMed  Google Scholar 

  • Cabrera LA (1976) Regiones Fitogeográficas Argentinas. ACME, Buenos Aires

    Google Scholar 

  • Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191

    Article  Google Scholar 

  • Chen D, Zheng S, Shan Y, Taube F, Bai Y (2013) Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Funct Ecol 27:273–281

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER, v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cornelissen JS, Lavorel E, Garnier Diaz S, Buchmann N, Gurvich D, Reich P, Ter Steege H, Morgan H, Van Der Heijden M (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Côté SD, Rooney TP, Tremblay JP, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147

    Article  Google Scholar 

  • Crawley MJ (1986) The population biology of invaders. Philos Trans R Soc Lond B 314:711–731

    Article  Google Scholar 

  • Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563

    Article  CAS  Google Scholar 

  • Cuevas-Reyes P, Pérez-López G, Maldonado-López Y, González-Rodríguez A (2017) Effects of herbivory and mistletoe infection by Psittacanthus calyculatus on nutritional quality and chemical defense of Quercus deserticola along Mexican forest fragments. Plant Ecol 218:687–697

    Article  Google Scholar 

  • Danell K, Huss-Danell K (1985) Feeding by insects and hares on birches earlier affected by moose browsing. Oikos 44:75–81

    Article  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JB (2011) Trophic downgrading of planet Earth. Science 333:301–306

    Article  CAS  PubMed  Google Scholar 

  • Findlay S, Carreiro M, Krischik V, Jones CG (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6:269–275

    Article  Google Scholar 

  • Fukami T, Wardle DA, Bellingham PJ, Mulder CPH, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MA, Williamson WM (2006) Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307

    Article  PubMed  Google Scholar 

  • Gill RMA (1992) A review of damage by mammals in north temperate forest: 3. Impact on trees and forests. Forestry 65:363–388

    Article  Google Scholar 

  • Gish M, Ben-Ari M, Inbar M (2017) Direct consumptive interactions between mammalian herbivores and plant-dwelling invertebrates: prevalence, significance, and prospectus. Oecologia 183:347–352

    Article  PubMed  Google Scholar 

  • Gross K (2008) Positive interactions among competitors can produce species-rich communities. Ecol Lett 11:929–936

    Article  PubMed  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229

    Article  CAS  PubMed  Google Scholar 

  • Jacksic F, Iriarte JA, Jimenez JA, Martinez DR (2002) Invaders without frontiers: cross-border invasions of exotic mammals. Biol Invasions 4:157–173

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kaspari M, Yanoviak SP (2009) Biogeochemistry and the structure of tropical brown food webs. Ecology 90:3342–3351

    Article  PubMed  Google Scholar 

  • Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198

    Article  CAS  PubMed  Google Scholar 

  • Martinsen GD, Driebe EM, Whitham TG (1998) Indirect interactions mediated by changing plant chemistry: beaver browsing benefits beetles. Ecology 79:192–200

    Article  Google Scholar 

  • McNaughton S (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336

    Article  Google Scholar 

  • Mooney HA (2010) The ecosystem-service chain and the biological diversity crisis. Philos Trans R Soc Lond B Biol Sci 365:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PD (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Nuñez MA, Bailey JK, Schweitzer JA (2010) Population, community and ecosystem effects of exotic herbivores: a growing global concern. Biol Invasions 12:297–301

    Article  Google Scholar 

  • Nuttle T, Yerger EH, Stoleson SH, Ristau TE (2011) Legacy of top-down herbivore pressure ricochets back up multiple trophic levels in forest canopies over 30 years. Ecosphere 2:1–11

    Article  Google Scholar 

  • Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst 36:81–105

    Article  Google Scholar 

  • Pastor J, Dewey B, Naiman RJ, McInnes PF, Cohen Y (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74:467–480

    Article  Google Scholar 

  • Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136

    Article  PubMed  Google Scholar 

  • Persson IL, Nilsson MB, Pastor J, Eriksson T, Bergström R, Danell K (2009) Depression of belowground respiration rates at simulated high moose population densities in boreal forests. Ecology 90:2724–2733

    Article  PubMed  Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  PubMed  Google Scholar 

  • Pringle RM, Young TP, Rubenstein DI, McCauley DJ (2007) Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna. Proc Natl Acad Sci 104:193–197

    Article  CAS  PubMed  Google Scholar 

  • Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221

    Article  Google Scholar 

  • Rodriguez-Cabal MA, Barrios-Garcia MN, Amico GC, Aizen MA, Sanders NJ (2013) Node-by-node disassembly of a mutualistic interaction web driven by species introductions. Proc Natl Acad Sci 110:16503–16507

    Article  PubMed  Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153

    Article  PubMed  Google Scholar 

  • Schöb C, Armas C, Guler M, Prieto I, Pugnaire FI (2013) Variability in functional traits mediates plant interactions along stress gradients. J Ecol 101:753–762

    Article  Google Scholar 

  • Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791

    Article  Google Scholar 

  • Stireman J, Dyer LA, Janzen DH, Singer M, Lill J, Marquis RJ, Ricklefs RE, Gentry G, Hallwachs W, Coley PD (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci USA 102:17384–17387

    Article  CAS  PubMed  Google Scholar 

  • Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol 6:206–210

    Article  CAS  PubMed  Google Scholar 

  • Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  CAS  PubMed  Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • van der Putten W (2012) Climate change, aboveground-belowground interactions, and species range shifts. Annu Rev Ecol Evol Syst 43:365–383

    Article  Google Scholar 

  • van der Wal R, van Lieshout SM, Loonen MJ (2001) Herbivore impact on moss depth, soil temperature and arctic plant growth. Polar Biol 24:29–32

    Article  Google Scholar 

  • van Klink R, van der Plas F, Van Noordwijk C, WallisDeVries MF, Olff H (2015) Effects of large herbivores on grassland arthropod diversity. Biol Rev 90:347–366

    Article  PubMed  Google Scholar 

  • Vanbergen AJ, Hails R, Watt A, Jones TH (2006) Consequences for host–parasitoid interactions of grazing-dependent habitat heterogeneity. J Anim Ecol 75:789–801

    Article  CAS  PubMed  Google Scholar 

  • Vázquez DP (2002) Multiple effects of introduced mammalian herbivores in a temperate forest. Biol Invasions 4:175–191

    Article  Google Scholar 

  • Vázquez DP, Simberloff D (2004) Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol Monogr 74:281–308

    Article  Google Scholar 

  • Veblen TT, Mermoz M, Martin C, Ramilo E (1989) Effects of exotic deer on forest regeneration and composition in Northern Patagonia. J Appl Ecol 26:711–724

    Article  Google Scholar 

  • Veblen TT, Mermoz M, Martin C, Kitzberger T (1992) Ecological impacts of introduced animals in Nahuel Huapi Nationa Park, Argentina. Conserv Biol 6:71–83

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Divers Distrib 12:43–455

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Springer, Berlin

    Google Scholar 

  • Wootton JT (1994) The nature and consequences of indirect effects. Annu Rev Ecol Syst 25:443–466

    Article  Google Scholar 

Download references

Acknowledgements

We thank staff of Nahuel Huapi National Park and Los Arrayanes National Park, D. Mujica and C. Chehebar for logistic support and permission to carry out fieldwork. We also thank the Editor and three anonymous reviewers for useful comments and suggestions. Special thanks go to Ezequiel Rodriguez-Cabal and Greg Crutsinger who made the drawings. This research was supported with a grant from “Agencia Nacional de Promoción Científica y Tecnológica” of Argentina (PICT 2014-2484) to MARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano A. Rodriguez-Cabal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Cabal, M.A., Barrios-Garcia, M.N., Greyson-Gaito, C.J. et al. Non-native ungulates indirectly impact foliar arthropods but not soil function. Biol Invasions 21, 3077–3084 (2019). https://doi.org/10.1007/s10530-019-02030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02030-9

Keywords

Navigation