Skip to main content

Advertisement

Log in

Biological invasions in forest ecosystems

  • Elton Review 3
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of microorganisms such as fungi, oomycetes, bacteria and viruses. These species have diverse ecological roles including primary producers, herbivores, predators, animal pathogens, plant pathogens, decomposers, pollinators and other mutualists. Although most non-native species have negligible effects on forests, a few have profound and often cascading impacts. These impacts include alteration of tree species composition, changes in forest succession, declines in biological diversity, and alteration of nutrient, carbon and water cycles. Many of these result from competition with native species but also trophic influences that may result in major changes in food web structure. Naturally regenerating forests around the world have been substantially altered by invading species but planted forests also are at risk. Non-native tree species are widely planted in many parts of the world for production of wood and fibre, and are chosen because of their frequently exceptional growth in their new environment. This greater growth is due, in part, to escape from herbivores and pathogens that exist in their native ranges. Over time, some pest species can “catch-up” with their hosts, leading to subsequent declines in forest productivity. Other impacts result when native herbivores or pathogens adapt to exotic trees or when novel associations form between pathogens and vectors. Additionally, planted non-native trees are sometimes invasive and can have substantial adverse effects on adjacent natural areas. Management of invasions in forests includes prevention of arrival, eradication of nascent populations, biological control, selection for resistance in host trees, and the use of cultural practices (silviculture and restoration) to minimize invader impacts. In the future, the worlds’ forests are likely to be subject to increasing numbers of invasions, and effective management will require greater international cooperation and interdisciplinary integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:e31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbetman MP, Meeus I, Morales CL, Aizen MA, Smagghe G (2013) Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol Invasions 15:489–494

    Article  Google Scholar 

  • Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ (2010) Historical accumulation of nonindigenous forest pests in the continental US. Bioscience 60:886–897

    Article  Google Scholar 

  • Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, Holmes TP, Liebhold AM, McCullough DG, Von Holle B (2011) Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6(9):e24587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker HG (1965) Characteristics and mode of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 147–172

    Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes and global change. Oxford University Press, Oxford

    Google Scholar 

  • Barnes BV, Zak DR, Denton SR, Spurr SH (1997) Forest ecology, 4th edn. Wiley, New York

    Google Scholar 

  • Beggs J (2001) The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate resource. Biol Conserv 99:17–28

    Article  Google Scholar 

  • Beggs JR, Brockerhoff EG, Corley JC, Kenis M, Masciocchi M, Muller F et al (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526

    Article  Google Scholar 

  • Bellingham PJ, Kardol P, Bonner KI, Buxton P, Morse C, Wardle DA (2016) Browsing by an invasive herbivore promotes development of plant and soil communities during primary succession. J Ecol 105:1505–1507

    Article  CAS  Google Scholar 

  • Bertheau C, Brockerhoff EG, Roux-Morabito G, Lieutier F, Jactel H (2010) Novel insect-tree associations resulting from accidental and intentional biological ‘invasions’: a meta-analysis of effects on insect fitness. Ecol Lett 13:506–515

    Article  PubMed  Google Scholar 

  • Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958

    Article  CAS  PubMed  Google Scholar 

  • Bohlen PJ, Scheu S, Hale CM, McLean MA, Migge S, Groffman PM, Parkinson D (2004) Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ 2:427–435

    Article  Google Scholar 

  • Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ (2013) The consequence of tree pests and diseases for ecosystem services. Science 342:1235773

    Article  CAS  PubMed  Google Scholar 

  • Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJ, D’Antonio CM, Diez JM, Dukes JS, Ibanez I (2012) Global change, global trade, and the next wave of plant invasions. Front Ecol Environ 10:20–28

    Article  Google Scholar 

  • Branco M, Brockerhoff EG, Castagneyrol B, Orazio C, Jactel H, Saura S (2015) Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. J Appl Ecol 52:69–77

    Article  Google Scholar 

  • Brasier CM (2001) Rapid Evolution of Introduced Plant Pathogens via Interspecific Hybridization: hybridization is leading to rapid evolution of Dutch elm disease and other fungal plant pathogens. Bioscience 51:123–133

    Article  Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298

    Article  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SF (2013) Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manag 301:43–50

    Article  Google Scholar 

  • Brothers TS, Spingarn A (1992) Forest fragmentation and alien plant invasion of central Indiana old-growth forests. Conserv Biol 6:91–100

    Article  Google Scholar 

  • Brouwer NL, Hale AN, Kalisz S (2015) Mutualism-disrupting allelopathic invader drives carbon stress and vital rate decline in a forest perennial herb. AoB Plants 7:plv014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess TI, Wingfield MJ (2017) Pathogens on the move: a 100 year global experiment with planted eucalypts. Bioscience 67:14–25

    Article  Google Scholar 

  • Burrows WH, Henry BK, Back PV, Hoffmann MB, Tait LJ, Anderson ER, Menke N, Danaher T, Carter JO, McKeon GM (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Glob Change Biol 8:769–784

    Article  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Carle J, Holmgren P (2008) Wood from planted forests: a global outlook 2005–2030. For Prod J 58:6–18

    Google Scholar 

  • CBD (Convention on Biological Diversity) (2010) Global biodiversity outlook 3. SCBD, Montreal

    Google Scholar 

  • CBD (Convention on Biological Diversity) (2016) Forest biodiversity—about forest biodiversity. https://www.cbd.int/forest/about.shtml. Accessed 12 Dec 2016

  • Crawley MJ (1987) What makes a community invasible? Symp Brit Ecol Soc 26:429–453

    Google Scholar 

  • Crous PW, Groenewald JZ, Slippers B, Wingfield MJ (2016) Global food and fibre security threatened by current inefficiencies in fungal identification. Philos Trans R Soc B 371:20160024

    Article  Google Scholar 

  • Crous C, Burgess T, Le Roux J, Richardson D, Slippers B, Wingfield M (2017) Ecological disequilibrium during insect pest and pathogen accumulation in non-native trees. AoB Plants 9:plw081

    Google Scholar 

  • Crowley KF, Lovett GM, Arthur MA, Weathers KC (2016) Long-term effects of pest-induced tree species change on carbon and nitrogen cycling in northeastern US forests: a modeling analysis. For Ecol Manag 372:269–290

    Article  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  • Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) A century of the ornamental plant trade and its impact on invasion success. Divers Distrib 13:527–534

    Article  Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484

    Article  PubMed  Google Scholar 

  • Dodson EK, Fiedler CE (2006) Impacts of restoration treatments on alien plant invasion in Pinus ponderosa forests, Montana, USA. J Appl Ecol 43:887–897

    Article  Google Scholar 

  • Downey PO, Richardson DM (2016) Alien plant invasions and native plant extinctions: a six-threshold framework. AoB Plants 8:plw047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drenkhan R, Tomešová-Haataja V, Fraser S, Bradshaw RE, Vahalik P, Mullett MS, Martín-García J, Bulman LS, Wingfield MJ, Kirisits T, Cech TL (2016) Global geographic distribution and host range of Dothistroma species: a comprehensive review. For Pathol 46:408–442

    Article  Google Scholar 

  • Drenovsky RE, Grewell BJ, D’Antonio CM, Funk JL, James JJ, Molinari N, Parker, IM, Richards CL (2012) A functional trait perspective on plant invasion. Ann Bot 110:141–153

  • Dudley TL, Bean DW (2012) Tamarisk biocontrol, endangered species risk and resolution of conflict through riparian restoration. Biocontrol 57:331–347

    Article  Google Scholar 

  • Edburg SL, Hicke JA, Brooks PD, Pendall EG, Ewers BE, Norton U, Gochis D, Gutmann ED, Meddens AJ (2012) Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front Ecol Environ 10:416–424

    Article  Google Scholar 

  • Elton C (1958) The ecology of invasions by animals and plants. Methuen and Comp, London

    Book  Google Scholar 

  • Engelkes T, Morriën E, Verhoeven KJ, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WL, van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–948

    Article  CAS  PubMed  Google Scholar 

  • Epanchin-Niell R (2017) Economics of invasive species management: implications for forest biosecurity. Biol Invasions. doi:10.1007/s10530-017-1406-4

    Article  Google Scholar 

  • Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V, Epanchin-Niell RS, Gupta K, Hardy G, Huang Y, Kenis M, Kimani E (2015) International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ Sci Policy 51:228–237

    Article  Google Scholar 

  • Eschtruth AK, Cleavitt NL, Battles JJ, Evans RA, Fahey TJ (2006) Vegetation dynamics in declining eastern hemlock stands: 9 years of forest response to hemlock woolly adelgid infestation. Can J For Res 36:1435–1450

    Article  Google Scholar 

  • Essl F, Mang T, Moser D (2012) Ancient and recent alien species in temperate forests: steady state and time lags. Biol Invasions 14:1331–1342

    Article  Google Scholar 

  • Flower CE, Knight KS, Gonzalez-Meler MA (2013) Impacts of the emerald ash borer (Agrilus planipennis Fairmaire) induced ash (Fraxinus spp.) mortality on forest carbon cycling and successional dynamics in the eastern United States. Biol Invasions 15:931–944

    Article  Google Scholar 

  • Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE III, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224

    Article  CAS  PubMed  Google Scholar 

  • Frelich LE, Hale CM, Scheu S, Holdsworth AR, Heneghan L, Bohlen PJ, Reich PB (2006) Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol Invasions 8:1235–1245

    Article  Google Scholar 

  • Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    Article  CAS  PubMed  Google Scholar 

  • Fukami T, Wardle DA, Bellingham PJ, Mulder CP, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MN, Williamson WM (2006) Above-and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307

    Article  PubMed  Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    Article  CAS  PubMed  Google Scholar 

  • Gandhi KJ, Herms DA (2010) Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol Invasions 12:389–405

    Article  Google Scholar 

  • Garnas JR, Auger-Rozenberg MA, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18:935–952

    Article  Google Scholar 

  • Ghelardini L, Luchi N, Pecori F, Pepori AL, Danti R, Rocca GD, Capretti P, Tsopelas P, Santini A (2017) Ecology of invasive forest pathogens. Biol Invasions. doi:10.1007/s10530-017-1487-0

    Article  Google Scholar 

  • Goldewijk KK (2001) Estimating global land use change over the past 300 years: the HYDE database. Glob Biogeochem Cycles 15:417–433

    Article  Google Scholar 

  • Gottschalk KW (1993) Silvicultural guidelines for forest stands threatened by the gypsy moth. USDA Forest Service Northeastern Forest Experiment Station, General Technical Report NE-171

  • Graca RN, Ross-Davis AL, Knopfenstein NB, Peever TL, Cannon PG, Aun CP, Mizubuti EG, Alfenas AC (2013) Rust disease of Eucalypts, caused by Puccinia psidii, did not originate via host jump from guava in Brazil. Mol Ecol 22:6033–6047

    Article  PubMed  Google Scholar 

  • Green PT, O’Dowd DJ, Lake PS (2008) Recruitment dynamics in a rainforest seedling community: context-independent impact of a keystone consumer. Oecologia 156:373–385

    Article  PubMed  Google Scholar 

  • Gurevitch J, Padilla D (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474

    Article  PubMed  Google Scholar 

  • Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ, Kimberley M, Lowenstein F, Nuding A, Olson LJ, Turner J, Vasilaky KN (2014) Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE 9:e96611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajek A, Glare T, Maureen O (eds) (2008) Use of microbes for control and eradication of invasive arthropods, vol 6. Springer, Berlin

    Google Scholar 

  • Hajek AE, Hurley BP, Kenis M, Garnas JR, Bush SJ, Wingfield MJ, van Lenteren JC, Cock MJ (2016) Exotic biological control agents: a solution or contribution to arthropod invasions? Biol Invasions 18:953–969

    Article  Google Scholar 

  • Hale AN, Kalisz S (2012) Perspectives on allelopathic disruption of plant mutualisms: an exploration of potential mechanisms and consequences. Plant Ecol 213:1991–2006

    Article  Google Scholar 

  • Hale AN, Lapointe L, Kalisz S (2016) Invader disruption of belowground plant mutualisms reduces carbon acquisition and alters allocation patterns in a native forest herb. New Phytol 209:542–549

    Article  CAS  PubMed  Google Scholar 

  • Halldórsson G, Benedikz T, Oddsdóttir E, Oskarsson H (2003) The impact of the green spruce aphid Elatobium abietinum (Walker) on long-term growth of Sitka spruce in Iceland. For Ecol Manag 181:281–287

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207

    Article  Google Scholar 

  • Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404

    Google Scholar 

  • Harrington TC, Yun HY, Lu SS, Goto H, Aghayeva DN, Fraedrich SW (2011) Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036

    Article  PubMed  Google Scholar 

  • Hayward J, Horton TR, Nuñez MA (2015) Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytol 208:497–506

    Article  PubMed  Google Scholar 

  • Herms DA, McCullough DG (2014) Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Ann Rev Entomol 59:13–30

    Article  CAS  Google Scholar 

  • Holmes TP, Aukema JE, VonHolle B, Liebhold A, Sills E (2009) Economic impacts of invasive species in forests past, present, and future. The year in ecology and conservation biology. Ann NY Acad Sci 1162:18–38

    Article  PubMed  Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933

    Article  Google Scholar 

  • Hurley BP, Sathyapala S, Wingfield MJ (2017) Challenges to planted forest health in developing economies. Biol Invasions. doi:10.1007/s10530-017-1488-z

    Article  Google Scholar 

  • Iannone BV III, Potter KM, Hamil KAD, Huang W, Zhang H, Guo Q, Oswalt CM, Woodall CW, Fei S (2016) Evidence of biotic resistance to invasions in forests of the Eastern USA. Landsc Ecol 31:85–99

    Article  Google Scholar 

  • Innes J, Kelly D, Overton JM, Gillies C (2010) Predation and other factors currently limiting New Zealand forest birds. N Z J Ecol 34:86–114

    Google Scholar 

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    Article  PubMed  Google Scholar 

  • Jactel H, Menassieu P, Vetillard F, Gaulier A, Samalens JC, Brockerhoff EG (2006) Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, Matsucoccus feytaudi (Homoptera: Margarodidae). Can J For Res 36:314–323

    Article  Google Scholar 

  • Jaksic FM, Iriarte A, Jiminez JE, Martinez DR (2002) Invaders without frontiers: cross border invasions of exotic mammals. Biol Invasions 4:157–173

    Article  Google Scholar 

  • Kalisz S, Spigler RB, Horvitz CC (2014) In a long-term experimental demography study, excluding ungulates reversed invader’s explosive population growth rate and restored natives. Proc Natl Acad Sci 111:4501–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Keitt B, Campbell K, Saunders A, Clout M, Wang Y, Heinz R, Newton K, Tershy B (2011) The global islands invasive vertebrate eradication database: a tool to improve and facilitate restoration of island ecosystems. In: Veitch CR, Clout MN, Towns DR (eds) Island invasives: eradication and management. IUCN, Gland, pp 74–77

    Google Scholar 

  • Kelly D, Robertson AW, Ladley JJ, Anderson SH, McKenzie RJ (2006) Relative (un) importance of introduced animals as pollinators and dispersers of native plants. In: Allen RB, Lee WG (eds) Biological Invasions in New Zealand. Springer, Berlin, pp 227–245

    Chapter  Google Scholar 

  • Kenis M, Hurley BP, Hajek AE, Cock MJW (2017a) Classical biological control of insect pests of trees—facts and figures. Biol Invasions. doi:10.1007/s10530-017-1414-4

    Article  Google Scholar 

  • Kenis M, Roques A, Santini A, Liebhold A (2017b) Impact of non-native invertebrates and pathogens on market forest resources. In: Vilà M, Hulme PE (eds) Impact of biological invasions on ecosystem services. Springer, Cham, pp 103–117

    Chapter  Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JM, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  CAS  PubMed  Google Scholar 

  • Kiritani K, Yamamura K (2003) Exotic insects and their pathways for invasion. In: Carlton J (ed) Invasive species: vectors and management strategies. Island Press, Washington, pp 44–67

    Google Scholar 

  • Knight TM, Dunn JL, Smith LA, Davis J, Kalisz S (2009) Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat Area J 29:110–116

    Article  Google Scholar 

  • Koziol L, Bever JD (2017) The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J Appl Ecol. doi:10.1111/1365-2664.12843

  • Lamarque LJ, Delzon S, Lortie CJ (2011) Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biol Invasions 13:1969–1989

    Article  Google Scholar 

  • Leung B, Springborn MR, Turner JA, Brockerhoff EG (2014) Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front Ecol Environ 12:273–279

    Article  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the United States. Front Ecol Environ 10:135–143

    Article  Google Scholar 

  • Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE (2013) A highly aggregated geographical distribution of forest pest invasions in the USA. Divers Distrib 19:1208–1216

    Article  Google Scholar 

  • Liebhold AM, Berec L, Brockerhoff EG, Epanchin-Niell RS, Hastings A, Herms DA, Kean JM, McCullough DG, Suckling DM, Tobin PC, Yamanaka T (2016) Eradication of invading insect populations: from concepts to applications. Annu Rev Entomol 61:335–352

    Article  CAS  PubMed  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Kimberley M (2017) Predicting invasions from finite species pools. J Appl Ecol. doi:10.1111/1365-2664.12895

    Article  Google Scholar 

  • Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11:81–96

    Article  Google Scholar 

  • Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395–405

    Article  Google Scholar 

  • MacDicken K, Jonsson Ő, Piňa L, Maulo S, Adikari Y, Garzuglia M, Lindquist E, Reams G, D’Annunzio R (2015) The global forest resources assessment 2015: how are the world’s forests changing. Food and Agriculture Organization of the United Nations, Rome

    Book  Google Scholar 

  • MacLeod A, Pautasso M, Jeger MJ, Haines-Young R (2010) Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur 2:49–70

    Article  Google Scholar 

  • Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7:142–149

    Article  Google Scholar 

  • Mattson WJ, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190:515–522

    Article  Google Scholar 

  • Mattson W, Vanhanen H, Veteli T, Sivonen S, Niemelä P (2007) Few immigrant phytophagous insects on woody plants in Europe: legacy of the European crucible? Biol Invasions 9:957–974

    Article  Google Scholar 

  • McKinley DC, Ryan MG, Birdsey RA, Giardina CP, Harmon ME, Heath LS, Houghton RA, Jackson RB, Morrison JF, Murray BC, Pataki DE (2011) A synthesis of current knowledge on forests and carbon storage in the United States. Ecol Appl 21:1902–1924

    Article  PubMed  Google Scholar 

  • Mikola P (1970) Mycorrhizal inoculation in afforestation. Int Rev For Res 3:123–196

    Google Scholar 

  • Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349:823–826

    Article  CAS  PubMed  Google Scholar 

  • Morin RS, Liebhold AM (2015) Invasions by two non-native insects alter regional forest species composition and successional trajectories. For Ecol Manag 341:67–74

    Article  Google Scholar 

  • Mortensen HS, Dupont YL, Olesen JM (2008) A snake in paradise: disturbance of plant reproduction following extirpation of bird flower-visitors on Guam. Biol Conserv 141:2146–2154

    Article  Google Scholar 

  • Mortensen DA, Rauschert ES, Nord AN, Jones BP (2009) Forest roads facilitate the spread of invasive plants. Invasion Plant Sci Manag 2:191–199

    Article  Google Scholar 

  • Mortenson LA, Hughes RF, Friday JB, Keith LM, Barbosa JM, Friday NJ, Liu Z, Sowards TG (2016) Assessing spatial distribution, stand impacts and rate of Ceratocystis fimbriata induced ‘ōhi‘a (Metrosideros polymorpha) mortality in a tropical wet forest, Hawai‘i Island, USA. For Ecol Manag 377:83–92

    Article  Google Scholar 

  • Muzika RM (2017) Opportunities for silviculture in management and restoration of forests affected by invasive species. Biol Invasions. doi:10.1007/s10530-017-1549-3

  • Niu HB, Liu WX, Wan FH, Liu B (2007) An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294:73–85

    Article  CAS  Google Scholar 

  • Nuñez MA, Dickie IA (2014) Invasive belowground mutualists of woody plants. Biol Invasions 16:645–661

    Article  Google Scholar 

  • Nuñez MA, Pauchard A (2010) Biological invasions in developing and developed countries: does one model fit all? Biol Invasions 12:707–714

    Article  Google Scholar 

  • Nuñez MA, Relva MA, Simberloff D (2008) Enemy release or invasional meltdown? Deer preference for exotic and native trees on Isla Victoria, Argentina. Austral Ecol 33:317–323

    Article  Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    Article  PubMed  Google Scholar 

  • Nuñez MA, Bailey JK, Schweitzer JA (2010) Population, community and ecosystem effects of exotic herbivores: a growing global concern. Biol Invasions 12:297–301

    Article  Google Scholar 

  • Nuñez MA, Torres A, Paul T, Dimarco R, Raal P, Policelli N, Chiuffo M, Moyano J, Garcia R, Van Wilgen B, Richardson DM, Pauchard A (2017) Ecology and management of invasive pines: prevention and early control are feasible and urgently needed. Biol Invasions. doi:10.1007/s10530-017-1483-4

    Article  Google Scholar 

  • Nunez-Mir GC, Liebhold AM, Guo Q, Brockerhoff EG, Jo I, Ordonez K, Fei S (2017) Biotic resistance in forest ecosystems: facts, artifacts, and moving forward. Biol Invasions. doi:10.1007/s10530-017-1413-5

    Article  Google Scholar 

  • Paillet FL (2002) Chestnut: history and ecology of a transformed species. J Biogeogr 29:1517–1530

    Article  Google Scholar 

  • Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol 56:181–201

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Paudel S, Longcore T, MacDonald B, McCormick MK, Szlavecz K, Wilson GW, Loss SR (2016) Belowground interactions with aboveground consequences: invasive earthworms and arbuscular mycorrhizal fungi. Ecology 97:406–414

    Article  Google Scholar 

  • Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ (2015) Changes in planted forests and future global implications. For Ecol Manag 352:57–67

    Article  Google Scholar 

  • Peltzer DA, Allen RB, Lovett GM, Whitehead D, Wardle DA (2010) Effects of biological invasions on forest carbon sequestration. Glob Change Biol 16:732–746

    Article  Google Scholar 

  • Ploetz RC, Hulcr J, Wingfield MJ, De Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872

    Article  PubMed  Google Scholar 

  • Policelli N, Chiuffo MC, Moyano J, Torres A, Rodriguez-Cabal MA, Nuñez MA (2017) Pathogen accumulation cannot undo the impact of invasive species. Biol Invasions. doi:10.1007/s10530-017-1439-8

    Article  Google Scholar 

  • Portales-Reyes C, Van Doornik T, Schultheis EH, Suwa T (2015) A novel impact of a novel weapon: allelochemicals in Alliaria petiolata disrupt the legume-rhizobia mutualism. Biol Invasions 17:2779–2791

    Article  Google Scholar 

  • Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    Article  CAS  PubMed  Google Scholar 

  • Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864

    Article  CAS  PubMed  Google Scholar 

  • Reed SE, Muzika RM (2010) The influence of forest stand and site characteristics on the composition of exotic dominated ambrosia beetle communities (Coleoptera: Curculionidae: Scolytinae). Environ Entomol 39:1482–1491

    Article  PubMed  Google Scholar 

  • Relva MA, Nunez MA, Simberloff D (2010) Introduced deer reduce native plant cover and facilitate invasion of non-native tree species: evidence for invasional meltdown. Biol Invasions 12:303–311

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek, M (2000) Plant invasions – the role of mutualisms. Biol Rev 75:65–93

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Rigot T, van Halder I, Jactel H (2014) Landscape diversity slows the spread of an invasive forest pest species. Ecography 37:648–658

    Article  Google Scholar 

  • Roberds JH, Bishir JW (1997) Risk analyses in clonal forestry. Can J For Res 27:425–432

    Article  Google Scholar 

  • Rodriguez-Echeverria S, Fajardo S, Ruiz-Diez B, Fernandez-Pascual M (2012) Differential effectiveness of novel and old legume-rhizobia mutualisms: implications for invasion by exotic legumes. Oecologia 170:253–261

    Article  PubMed  Google Scholar 

  • Roux J, Granados GM, Shuey L, Barnes I, Wingfield MJ, Mc Taggart AR (2016) A unique genotype of the rust pathogen Puccinia psidii on Myrtaceae in South Africa. Australas Plant Pathol 45:645–652

    Article  CAS  Google Scholar 

  • Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362

    Article  Google Scholar 

  • Santini A, Ghelardini L, Pace CD, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Schulz BK, Gray AN (2013) The new flora of northeastern USA: quantifying introduced plant species occupancy in forest ecosystems. Environ Monit Assess 185:3931–3957

    Article  PubMed  Google Scholar 

  • Sharov AA, Leonard D, Liebhold AM, Roberts EA, Dickerson W (2002) “Slow the spread”: a national program to contain the gypsy moth. J For 100:30–36

    Google Scholar 

  • Slippers B, Hurley BP, Wingfield MJ (2015) Sirex woodwasp: a model for evolving management paradigms of invasive forest pests. Annu Rev Entomol 60:601–619

    Article  CAS  PubMed  Google Scholar 

  • Sniezko RA, Koch J (2017) Breeding trees resistant to insects and diseases—putting theory into application. Biol Invasions. doi:10.1007/s10530-017-1482-5

    Article  Google Scholar 

  • Stohlgren TJ, Barnett DT, Kartesz JT (2003) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1:11–14

    Article  Google Scholar 

  • Suzuki K (2002) Pine wilt disease—a threat to pine forest in Europe. Dendrobiology 48:71–74

    Google Scholar 

  • Tarigan M, Roux J, Van Wyk M, Tjahjono B, Wingfield MJ (2011) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. S Afr J Bot 77:292–304

    Article  Google Scholar 

  • Telford A, Cavers S, Ennos RA, Cottrell JE (2015) Can we protect forests by harnessing variation in resistance to pests and pathogens? Forestry 88:3–12

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tobin PC, Kean JM, Suckling DM, McCullough DG, Herms DA, Stringer LD (2014) Determinants of successful arthropod eradication programs. Biol Invasions 16:01–414

    Article  Google Scholar 

  • Traveset A, Richardson DR (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Tsopelas P, Santini A, Wingfield MJ, de Beer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101:645–658

    Article  PubMed  Google Scholar 

  • Van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37

    Article  PubMed  Google Scholar 

  • Vavra M, Parks CG, Wisdom MJ (2007) Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. For Ecol Manag 246:66–72

    Article  Google Scholar 

  • Vilà M, Hulme PE (eds) (2017) Impact of biological invasions on ecosystem services. Springer, Berlin

    Google Scholar 

  • Villari C, Herms DA, Whitehill JGA, Cipollini D, Bonello P (2016) Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms. New Phytol 209:63–79

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation and ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Von Holle B, Delcourt HR, Simberloff D (2003) The importance of biological inertia in plant community resistance to invasion. J Veg Sci 14:425–432

    Article  Google Scholar 

  • Wandrag EM, Sheppard A, Duncan RP, Hulme PE (2013) Reduced availability of rhizobia limits the performance but not invasiveness of introduced Acacia. J Ecol 101:1103–1113

    Article  Google Scholar 

  • Wardle DA, Bardgett RD (2004) Human-induced changes in densities of large herbivorous mammals: consequences for the decomposer subsystem. Front Ecol Environ 2:145–153

    Article  Google Scholar 

  • Wardle DA, Peltzer DA (2017) Impacts of invasive biota in forest ecosystems in an aboveground-belowground context. Biol Invasions. doi:10.1007/s10530-017-1372-x

    Article  Google Scholar 

  • Wardle DA, Barker GM, Yeates GW, Bonner KI, Ghani A (2001) Introduced browsing mammals in natural New Zealand forests: aboveground and belowground consequences. Ecol Monogr 71:587–614

    Article  Google Scholar 

  • Wardle DA, Karl BJ, Beggs JR, Yeates GW, Williamson WM, Bonner KI (2010) Determining the impact of scale insect honeydew, and invasive wasps and rodents, on the decomposer subsystem in a New Zealand beech forest. Biol Invasions 12:2619–2638

    Article  Google Scholar 

  • Wavrek M, Heberling JM, Fei S, Kalisz S (2017) Herbaceous invaders in temperate forests: a systematic review of their ecology and proposed mechanisms. Biol Invasions. doi:10.1007/s10530-017-1456-7

    Article  Google Scholar 

  • Webster CR, Jenkins MA, Jose S (2006) Woody invaders and the challenges they pose to forest ecosystems in the eastern United States. J For 104:366–374

    Google Scholar 

  • Wingfield MJ, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon TR, Wingfield BD, Coutinho TA (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Australas Plant Pathol 37:319–334

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. N Z J For Sci 40(Suppl):S95–S103

    Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836

    Article  CAS  PubMed  Google Scholar 

  • Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions 18:1045–1056

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Wingfield BD, Barnes I (2017a) The unified framework for biological invasions: a forest fungal pathogen perspective. Biol Invasions. doi:10.1007/s10530-017-1450-0

    Article  Google Scholar 

  • Wingfield MJ, Barnes I, de Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017b) Novel associations between ophiostomatoid fungi, insects and tree hosts: current status—future prospects. Biol Invasions. doi:10.1007/s10530-017-1468-3

    Article  Google Scholar 

  • Wood JR, Dickie IA, Moeller HV, Peltzer DA, Bonner KI, Rattray G, Wilmshurst JM (2015) Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. J Ecol 103:121–129

    Article  Google Scholar 

  • Zenni RD, Dickie IA, Wingfield MJ, Hirsch H, Crous CJ, Meyerson LA, Burgess TI, Zimmerman TG, Klock MM, Sieman E, Erfmeier A, Aragon R, Moniti L, Le Roux JJ (2017) Evolutionary dynamics of tree invasions following the unified framework for biological invasions. AoB Plants 9:plw085

    Google Scholar 

Download references

Acknowledgements

This paper is a product of the International Union of Forest Research Organizations (IUFRO) Task Force on Biological Invasions in Forests. We are grateful to Kamal Gandhi and Gary Lovett for their useful comments. The authors acknowledge the support of OECD Cooperative Research Program, USDA NIFA, USDA APHIS PPQ, US Forest Service Forest Health Protection, US Forest Service International Programs and IUFRO SPDC. DAW acknowledges support from the BioDivErsA FFII program. They also thanks L. Blackburn and R. Young for technical assistance. SK acknowledges support from the US National Science Foundation DEB 0958676 and DEB 1457531. EGB was supported by MBIE core funding to Scion and the Better Border Biosecurity Collaboration (www.b3nz.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Liebhold.

Additional information

Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nuñez / Special issue on Biological Invasions in Forests prepared by a task force of the International Union of Forest Research Organizaons (IUFRO).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 kb)

Supplementary material 2 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebhold, A.M., Brockerhoff, E.G., Kalisz, S. et al. Biological invasions in forest ecosystems. Biol Invasions 19, 3437–3458 (2017). https://doi.org/10.1007/s10530-017-1458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1458-5

Keywords

Navigation