Skip to main content

Advertisement

Log in

Eco-biology, impact, and management of Sorghum halepense (L.) Pers.

  • Invasion Note
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Sorghum halepense (L.) Pers. is ranked among the worst and extensively disseminated weed species. It is emerging as a potential menace for agroecosystems in 53 different countries across the world. This weed is adapted to warmer regions and is native to Mediterranean areas of Africa, Asia, and Europe. In the mid-1900s, cultivation of this weed species as a potential forage crop resulted in its escape from crop fields and invasion of agricultural and natural areas, but in some European countries, it has been introduced deliberately (e.g., as contamination of seeds and soil). S. halepense interferes with economically important agronomic and horticultural crops and cause 57–88% yield losses. Herbicide tolerance, diverse propagation mechanisms, rapid development, and strong competitiveness are key attributes in its invasion. Conventional management approaches are limited in their scope to control this weed due to its rapid vegetative growth and increasing herbicidal tolerance. Integration of chemical methods with cultural or mechanical approaches is important for restricting its future spread to non-infested areas. This review provides insights into the invasion mechanisms of S. halepense, which will help in its management. A better understanding of ecobiological aspects, survival mechanisms, and genetic variabilities of S. halepense, within a wide range of environmental conditions, will assist in designing more effective management strategies for this serious invasive weed. Collaborative research between the various countries impacted by this weed will assist in developing efficient, sustainable, and economical approaches to restrict its invasion in new areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acciaresi HA, Chidichimo HO (2005) Ecophysiological response of Sorghum halepense populations to reduced rates of nicosulfuron. Pesq Agropec Bras 40:541–547

    Article  Google Scholar 

  • Acciaresi HA, Guiamet JJ (2010) Below- and above-ground growth and biomass allocation in maize and Sorghum halepense in response to soil water competition. Weed Res 50:481–492

    Article  Google Scholar 

  • Achon MA, Sobrepere M (2001) Incidence of potyvirus in commercial maize fields and their seasonal cycles in Spain. J Plant Dis Protect 108:399–406

    CAS  Google Scholar 

  • Achon MA, Serrano L, Clemente-Orta G, Sossai S (2016) First report of Maize chlorotic mottle virus on a Perennial Host, Sorghum halepense, and Maize in Spain. Plant Dis 101:393

  • Afridi RA, Khan MA, Gul H, Khan MD (2014) Allelopathic influence of rice extracts on phenology of various crops and weeds. Pak J Bot 46:1211–1215

    Google Scholar 

  • Alipour S, Farshadfar E, Amirian M, Montazeri M (2013) The effect of St Johnson wort (Hypericum perforatum) extract on the weeds of corn (Zea mays L.) under laboratory condition. Annu Biol Res 4:23–28

    Google Scholar 

  • Anderson WP (1999) Perennial weeds: characteristics and identification of selected herbaceous species. Iowa State University Press, Ames

    Google Scholar 

  • Arnold BRL, Fenner M, Edwards PJ (1992) Changes in dormancy level in Sorghum halepense (L.) Pers. seeds induced by water stress during seed development. Funct Ecol 6:596–605

    Article  Google Scholar 

  • Arpaci BB, Akinci İE, Kisakurek MN, Gozcu D, Yarali F, Candemir S (2016) Effect of crop rotation on yield and weed density for organic red pepper cultivation in Kahramanmaras. Agric Sci Res J 6:63–70

    Google Scholar 

  • Asgharipour MR, Armin M (2010) Inhibitory effects of Sorghum halepense root and leaf extracts on germination and early seedling growth of widely used medicinal plants. Adv Environ Biol 4:316–325

    Google Scholar 

  • Baghestani M, Zanda E, Soufizadeha S, Eskandari A, Pourazar R, Veysi M, Nassirzadeh N (2007) Efficacy evaluation of some dual purpose herbicides to control weeds in maize (Zea mays L.). Crop Prot 26:936–942

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bajwa AA, Chauhan BS, Farooq M, Shabbir A, Adkins SW (2016) What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta 244:39–57

    Article  CAS  PubMed  Google Scholar 

  • Bangarwa SK, Norsworthy JK (2014) Brassicaceae cover-crop effects on weed management in plasticulture tomato. J Crop Improv 28:145–158

    Article  CAS  Google Scholar 

  • Barroso J, Maxwell BD, Dorado J, Andujar D, San Martín C, Fernandez-Quintanilla C (2016) Response of Sorghum halepense demographic processes to plant density and rimsulfuron dose in maize. Weed Res. doi:10.1111/wre.12208

    Article  Google Scholar 

  • Bennett HW (1973) Johnsongrass, carpet grass and other grasses for the humid south. In: Heath ME, Metcalfe DS, Barnes RF (eds) Forages. Iowa State University Press, Ames, pp 286–293

    Google Scholar 

  • Benvenuti S, Macchia M, Miele S (2001) Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci 49:528–535

    Article  CAS  Google Scholar 

  • Bibak H, Jalali M (2015) Allopathic effects of aqueous extract of Sorghum halepense L. and Amaranths retroflexus L. on germination of sorghum and wheat. Forages 221:7–14

    Google Scholar 

  • Binimelis R, Pengue W, Monterroso I (2009) “Transgenic treadmill”: responses to the emergence and spread of glyphosate-resistant Johnsongrass in Argentina. Geoforum 40:623–633

    Article  Google Scholar 

  • Bridges DC, Chandler JM (1987a) Influence of Johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Sci 35:63–67

    Article  Google Scholar 

  • Bridges DC, Chandler JM (1987b) Effect of herbicide and weed height on Johnsongrass (Sorghum halepense) control and cotton (Gossypium hirsutum) yield. Weed Technol 1:207–211

    Article  CAS  Google Scholar 

  • Burke IC, Wilcut JW, Crammer J (2006) Cross-resistance of a Johnsongrass (Sorghum halepense) biotype to aryloxyphenox ypropionate and cyclohexanedione herbicides. Weed Technol 20:571–575

    Article  CAS  Google Scholar 

  • Butnariu M (2012) An analysis of Sorghum halepense’s behavior in presence of tropane alkaloids from Datura stramonium extracts. Chem Central J 6:75

  • Butnariu M, Coradini CZ (2012) Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry. Chem Cent J 6:1–9

    Article  Google Scholar 

  • Caballero PP, Ramirez CC, Niemeyer HM (2001) Specialisation pattern of the aphid Rhopalosiphum maidis is not modified by experience on a novel host. Entomol Exp Appl 100:43–52

    Article  Google Scholar 

  • California Department of Food and Agriculture (CDFA) (2002) Encycloweedia. http://pi.cdfa.ca.gov/weedinfo/SORGHUM2.html. Accessed 17 May 2015

  • Chambers N, Hawkins TO (2002) Invasive plants of the Sonoran Desert a field guide. Sonoran Institute, Environmental Education Exchange, National Fish and Wildlife Foundation, with funding from many other organizations. Tucson, Arizona

  • Chandramohan S, Charudattan R (2001) Control of seven grasses with a mixture of three fungal pathogens with restricted host ranges. Biol Cont 22:246–255

    Article  Google Scholar 

  • Chauhan BS (2012) Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol 26:1–13

    Article  Google Scholar 

  • Chauhan BS, Johnson DE (2010) Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Res 117:177–182

    Article  Google Scholar 

  • Chiang MY, Van Dyke CG, Leonard KJ (1989) Evaluation of endemic foliar fungi for potential biological control of Johnsongrass (Sorghum halepense): screening and host range tests. Plant Dis 73:459–464

    Article  Google Scholar 

  • Chirita R, Grozea I, Sarpe N, Lauer KF (2007) Control of Sorghum halepense (L.) species in western part of Romania. Commun Agric Appl Biol Sci 73:959–964

    Google Scholar 

  • Clements DR, Ditommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Article  Google Scholar 

  • Concenco G, Machado LAZ, Ceccon G (2012) Espécies de sorghum infestantes: importância e manejo em sistemas produtivos. Embrapa Agropecuária Oeste, Dourados

    Google Scholar 

  • Corkern CB, Reynolds DB, Vidrine PR, Griffin JL, Jordan DL (1998) Bromoxynil antagonizes johnsongrass (Sorghum halepense) control with graminicides. Weed Technol 12:205–208

    Article  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    Article  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Weston LA, Duke SO (2003a) Anatomy of sorgoleone-secreting root hairs of sorghum species. Int J Plant Sci 164:861–866

    Article  Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003b) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083

    Article  CAS  PubMed  Google Scholar 

  • Dalley CD, Richard EP (2008) Control of rhizome Johnsongrass Sorghum halepense) in sugarcane with trifloxysulfuron and asulam. Weed Technol 22:397–401

    Article  CAS  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2001) Dicamba and Atrazine antagonism on sulfonylurea herbicides used for Johnsongrass (Sorghum halepense) control in corn (Zea mays L.)1. Weed Technol 15:62–67

    Article  CAS  Google Scholar 

  • Dikic M, Gadžo D, Gavrić T, Šapčanin V, Podrug A (2011) Dormancy and weed seed germination. Herbologia 12:150–155

    Google Scholar 

  • Egley GH, Chandler JM (1978) Germination and viability of weed seeds after 25 years in a 50-year buried seed study. Weed Sci 26:230–239

    Article  Google Scholar 

  • Essl F, Dullinger S, Kleinbauer I (2009) Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81:119–133

    Google Scholar 

  • Farhoudi R, Modhej A, Afrous A (2015) Effect of sunflower (Helianthus annus L. cv. Azargol) extracts on seedling growth, photosynthesis and enzyme activities of Sorghum halepense and Sinapis arvensis. Walia J 31:229–235

    Google Scholar 

  • Felger RS (2000) Flora of the Gran Desierto and Rio Colorado of northwestern Mexico. The University of Arizona Press, Tucson

    Google Scholar 

  • Follak S, Essl F (2013) Spread dynamics and agricultural impact of Sorghum halepense, an emerging invasive species in Central Europe. Weed Res 53:53–60

    Article  Google Scholar 

  • Gaskill C (2013) Johnsongrass and other sorghums can cause toxicity when grazed. College of Agriculture, Food and Environment, University of Kentucky. http://stablemanagement.com/article/johnsongrass-and-other-sorghums-can-cause-toxicity-when-graz#sthash.U3wKeZWC.dpuf

  • Ghersa CM, Martinez-Ghersa MA, Satorre EH, Esso M, Chichotky G (1993) Seed dispersal, distribution and recruitment of seedlings of Sorghum halepense (L.) Pers. Weed Res 33:79–88

    Article  Google Scholar 

  • Ghosh S, Haldar P, Mandal DK (2014) Suitable food plants for mass rearing of the short-horn grasshopper Oxya hyla hyla (Orthoptera: Acrididae). Eur J Entomol 111:448–452

    Article  Google Scholar 

  • Golubinova I, Ilieva A (2014) Allelopathic effects of water extracts of Sorghum halepense (L.) Pers., Convolvulus arvensis L. and Cirsium arvensis Scop. on early seedling growth of some leguminous crops. Pesti Fitomedi 29:35–43

    Article  Google Scholar 

  • Green JM, Owen MDK (2011) Herbicide resistant crops: utilities and limitations for herbicide resistant weed management. J Agric Food Chem 59:5819–5829

    Article  CAS  PubMed  Google Scholar 

  • Gressel J (2005) Crop ferality and volunteerism. CRC Press/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Griffin JL, Miller DK, Salassi ME (2006) Johnsongrass (Sorghum halepense) control and economics of using glyphosate-resistant soybean in fallowed sugarcane fields 1. Weed Technol 20:980–985

    Article  Google Scholar 

  • Groves RH (1991) Weeds of tropical Australia. In: Baker FWG (ed) Tropical grassy weeds. CAB International, Wallingford, pp 189–196

    Google Scholar 

  • Guertin P (2001) Observations made during the duration of weed distribution mapping for the USGS Weeds in the West project occurring in the southern Arizona National Park Service management areas. USGS/BRD, Sonoran Desert Field Station, The University of Arizona, Biological Sciences East, Tucson, Arizona

  • Gunes E, Uludag A, Uremis I (2008) Economic impact of Johnsongrass (Sorghum halepense (L) Pers.) in cotton production in Turkey. Z Pflanzenkrankh Pflanzenschutz 21:515–520

    Google Scholar 

  • Halkier BA, Moller BL (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Phys 90:1552–1559

    Article  CAS  Google Scholar 

  • Hamada AA, Koch W, Hamdoun A, Kunisch M, Sauerborn J (1993) Effect of temperature, light, and simulated drought on the germination of some weed species from the Sudan. Angewandte Bot 7:52–55

    Google Scholar 

  • Heap I (2014) Herbicide resistant weeds. In: Pimentel D, Peshin R (eds) Integrated pest management. Springer, Dordrecht, pp 281–301

    Chapter  Google Scholar 

  • Hejl AM, Koster KL (2004) The allelochemical sorgoleone inhibits root H+–ATPase and water uptake. J Chem Ecol 30:2181–2191

    Article  CAS  Google Scholar 

  • Henderson L (2001) Alien weeds and invasive plants. Plant Protection Research Institute Handbook No. 12. Paarl Printers, Cape Town, South Africa

  • Hesammi E (2011) The allopathic effects of Sorghum halepense and Amaranthus retroflexsus extract on the germination of Corn grain. Aust J Basic Appl Sci 5:2249–2253

    Google Scholar 

  • Hoffman ML, Buhler DD (2002) Utilizing sorghum as a functional model of crop–weed competition. I. Establishing a competitive hierarchy. Weed Sci 50:466–472

    Article  CAS  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1997) Sorghum halepense L. Pers. In: Holm (ed) The world’s worst weeds, distribution and biology. The University Press of Hawaii, Honolulu, pp 54–61

  • Huang HJ, Zhang CX, Meng QH, Wei SH, Liu Y, Cui HL (2008) Allelopathic potential of invasive alien weed Sorghum halepense (L.) Pers. Chin J Ecol 27:1234–1237

    Google Scholar 

  • Huang H, Liu Y, Meng Q, Cui SWH, Zhang C (2010) Flavonolignans and other phenolic compounds from Sorghum halepense (L.) Pers. Biochem Syst Ecol 38:656–658

    Article  CAS  Google Scholar 

  • Huang H, Ling T, Wei S, Zhang C (2015) A new 4-oxazolidinone from Sorghum halepense (L.) Pers. Rec Nat Prod 9:247–250

    Google Scholar 

  • Hutchison M (2011) Vegetation management guideline: Johnson grass (Sorghum halepense). INHS, Prairie Research Institute, University of Illinois at Urbana-Champaign

  • Ikley JT, Wise KA, Johnson WG (2015) Annual Ryegrass (Lolium multiflorum), Johnsongrass (Sorghum halepense), and Large Crabgrass (Digitaria sanguinalis) are alternative hosts for Clavibacter michiganensis subsp. nebraskensis, causal agent of Goss’s wilt of corn. Weed Sci 63:901–909

    Article  Google Scholar 

  • Jacobs SW, Whalley RDB, Wheeler DJ (2008) Grasses of New South Wales. University of New England, Botany

    Google Scholar 

  • Johnson WG, Frans RE (1991) Johnsongrass (Sorghum halepense) control in soybeans (Glycine max) with postemergence herbicides. Weed Technol 5:87–91

    Article  CAS  Google Scholar 

  • Johnson DB, Norsworthy JK (2014) Johnsongrass (Sorghum halepense) management as influenced by herbicide selection and application timing. Weed Technol 28:142–150

    Article  CAS  Google Scholar 

  • Johnson DB, Norsworthy JK, Scott RC (2014a) Distribution of herbicide-resistant Johnsongrass (Sorghum halepense) in Arkansas. Weed Technol 28:111–121

    Article  CAS  Google Scholar 

  • Johnson DB, Norsworthy JK, Scott RC (2014b) Herbicide programs for controlling glyphosate-resistant Johnsongrass (Sorghum halepense) in glufosinate-resistant soybean. Weed Technol 28:10–18

    Article  CAS  Google Scholar 

  • Kagan IA, Rimando AM, Dayan FE (2003) Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J Agric Food Chem 51:7589–7595

    Article  CAS  PubMed  Google Scholar 

  • Kalinova SH, Golubinova I, Hristoskov A, Ilieva A (2012) Allelopathic effect of aqueous extract from root systems of Johnsongrass on the seed germination and the initial development of soyabean pea and vetch. Herbologia 13:1–10

    Google Scholar 

  • Kaloumenos NS, Eleftherohorinos IG (2009) Identification of a Johnsongrass (Sorghum halepense) biotype resistant to ACCase-inhibiting herbicides in northern Greece. Weed Technol 23:470–476

    Article  CAS  Google Scholar 

  • Kashif M, Gul B, Khan H, Hidayat S, Amin M, Shakeel A, Ahmed I, Ahmad M (2015) Impact of soil moisture and soil depths on resprouting ability of Johnson grass (Sorghum halepense L.) rhizomes. Pak J Weed Sci Res 21:327–334

    Google Scholar 

  • Kearney TH, Peebles RH (1960) Arizona flora. University of California Press, Berkeley

    Book  Google Scholar 

  • Keeley PE, Thullen RJ (1979) Influence of planting date on the growth of Johnsongrass (Sorghum halepense) from seed. Weed Sci 27:554–558

    Article  Google Scholar 

  • Kleinbauer I, Dullinger S, Klingenstein F, May R, Nehring S, Essl F (2010) Ausbreitungspotenzial ausgewählter neophytischer Gefäßpflanzen unter Klimawandel in Deutschland und Österreich: Ergebnisse aus dem F + E-Vorhaben FKZ 806 82 330. Bundesamt für Naturschutz. http://www.bfn.de/0502_artenschutz.html. Accessed 20 March 2012

  • Krenchinski FH, Albrecht AJP, Albrecht LP, Villetti HL, Orso G, Barroso AAM, Victoria Filho R (2015) Germination and dormancy in seeds of Sorghum halepense and Sorghum arundinaceum. Planta Daninha 33:223–230

    Article  Google Scholar 

  • Landry RL, Stephenson DO, Woolam BC (2016) Glufosinate rate and timing for control of glyphosate-resistant rhizomatous Johnsongrass (Sorghum halepense) in glufosinate-resistant soybean. Int J Agron. doi:10.1155/2016/8040235

    Article  Google Scholar 

  • Loddo D, VasiLeiaDis VP, Masin R, Zuin MC, Zanin G (2016) Inhibiting effect of shallow seed burial on grass weed emergence. Plant Prot Sci 52:64–69

    Article  Google Scholar 

  • Looker D (1981) Johnsongrass has an Achilles heel. New Farm 3:40–47

    Google Scholar 

  • Mahmoodzadeh H, Mahmoodzadeh M (2014) Allelopathic effects of rhizome aqueous extract of Cynodon dactylon L. on seed germination and seedling growth of Legumes, Labiatae and Poaceae. Iran J Plant Physiol 4:1047–1054

    Google Scholar 

  • Markovic M, Protic R, Protic N (2008) Efficiency and selectivity of herbicides in maize (Zea mays L.). Rom Agric Res 25:77–82

    Google Scholar 

  • Martin CA (2002) Sorghum halepense (Johnson grass). Arizona State University, Department of Plant Biology, Environmental Landscape Management, PLB 370. http://lsvl.la.asu.edu/plb370/johnsongrass.html

  • McKinley TL, Roberts RK, Hayes RM, English BC (1999) Economic comparison of herbicides for Johnsongrass (Sorghum halepense) control in glyphosate-tolerant soybean (Glycine max). Weed Technol 13:30–36

    Article  CAS  Google Scholar 

  • McWhorter CG (1973) Johnsongrass, its history and control. Weeds Today 3:12–13

    Google Scholar 

  • McWhorter CG (1981) Johnson grass as a weed. USDA Farm Bull 1537:3–19

    Google Scholar 

  • McWhorter CG (1989) History, biology, and control of Johnsongrass. Rev Weed Sci 4:85–121

    CAS  Google Scholar 

  • McWhorter CG (1993) A 16 year survey on levels of Johnsongrass (Sorghum halepense) in Arkansas, Louisiana, and Mississippi. Weed Sci 41:669–677

    Article  Google Scholar 

  • McWhorter CG, Jordan TN (1976a) Comparative morphological development of six Johnsongrass ecotypes. Weed Sci 24:270–275

    Article  Google Scholar 

  • McWhorter CG, Jordan TN (1976b) The effect of light and temperature on the growth and development of Johnsongrass. Weed Sci 24:88–91

    Article  Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO, Nanayakkara D, Khan IA, Abourashed EA, Dyan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochem 60:281–288

    Article  CAS  Google Scholar 

  • Mihovsky T, Pachev I (2012) Reduced tillage practices. Banat’s J Biotech 3:49–58

    Article  Google Scholar 

  • Millhollon R (2000) Loose kernel smut for biocontrol of Sorghum halepense in Saccharum sp. hybrids. Weed Sci 48:645–652

    Article  CAS  Google Scholar 

  • Mitskas MB, Eleftherohorinos IG, Damalas CA (2003) Interference between corn and Johnsongrass (Sorghum halepense) from seed or rhizome. Weed Sci 51:540–545

    Article  CAS  Google Scholar 

  • Mohammadi G, Noroozi N, Nosratti I (2013) An evaluation of Johnson grass (Sorghum halepense L.) seed hardness removing methods. J Agrobiol 30:83–88

    Google Scholar 

  • Monaghan N (1979) The biology of Johnsongrass (Sorghum halepense). Weed Res 19:261–267

    Article  Google Scholar 

  • Nalewaja JD (1999) Cultural practices for weed resistance management. Weed Technol 13:643–646

    Article  Google Scholar 

  • Navie S (2004) Declared plants of Australia. An identification and information system. Centre for Biological Information Technology, Brisbane

    Google Scholar 

  • Nellis DW (1997) Poisonous plants and animals of Florida and the Caribbean. Pineapple Press Inc., Florida

    Google Scholar 

  • Newman D (1993) The nature conservancy element stewardship abstract for Sorghum halepense. The Nature Conservancy. 1815 North Lynn St., Arlington, VA. http://tncweeds.ucdavis.edu/esadocs/documnts/sorghal.html

  • Nielsen JS, Moller BL (1999) Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes. Arch Biochem Biophys 368:121–130

    Article  CAS  PubMed  Google Scholar 

  • Norris JL, Shaw DR, Snipes CE (2002) Influence of row spacing and residual herbicides on weed control in glufosinate-resistant soybean (Glycine max). Weed Technol 16:319–325

    Article  CAS  Google Scholar 

  • Norsworthy JK, Scott RC, Estorninos J, Still J, Bangarwa S, Griffith G, Oliver L (2008) Confirmation and control of glyphosate-resistant Johnsongrass in Arkansas. Ark Crop Prot Assoc 12:18–19

    Google Scholar 

  • Nosratti I, Alizadeh HM, Rasoolzadeh S (2007) Control of Johnsongrass (Sorghum halepense) with nicosulfuron in maize at different planting patterns. J Agron 6:444–448

    Article  CAS  Google Scholar 

  • Nouri H, Talab ZA, Tavassoli A (2012) Effect of weed allelopathic of sorghum (Sorghum halepense) on germination and seedling growth of wheat, Alvand cultivar. Ann Biol Res 3:1283–1293

    Google Scholar 

  • Novak R, Dancza I, Szentey L, Karaman J (2009) Arable weeds of Hungary. The 5th National Weed Survey (2007–2008). Ministry of Agriculture and Rural Development, Budapest, Hungary

  • Ortiz A, Martínez L, Quintana Y, Pérez P, Fischer A (2014) Resistance of Johnsongrass [Sorghum halepense (L.) Pers.] to herbicides nicosulfuron and foramsulfuron + iodosulfuron in Venezuela. Bioagro 26:71–78

    Google Scholar 

  • Parizipour MG, Behjatnia SAA, Afsharifar A, Izadpanah K (2016) Natural hosts and efficiency of leafhopper vector in transmission of wheat dwarf virus. J Plant Pathol 98:483–492

    Google Scholar 

  • Parsa M, Aliverdi A, Hammami H (2013) Effect of the recommended and optimized doses of haloxyfop-P-methyl or imazethapyr on soybean-Bradyrhizobium japonicum symbiosis. Ind Crop Prod 50:197–202

    Article  CAS  Google Scholar 

  • Parsons WT, Cuthbertson EG (2001) Noxious weeds of Australia. CSIRO Publishing, VIC

  • Podrug A, Gadžo D, Muminović Š, Grahić J, Srebrović E, Đikić M (2014) Dormancy and germination of Johnsongrass seed (Sorghum halepense (L.) Pers.). Herbologia 14:1–10

    Google Scholar 

  • Quinn LD, Barney JN, McCubbins JS, Endres AB (2013) Navigating the “noxious” and “invasive” regulatory landscape: suggestions for improved regulation. BioSci 63:124–131

    Article  Google Scholar 

  • Rahimi S, Mashhadi HR, Banadaky MD, Mesgaran MB (2016) Variation in weed seed fate fed to different holstein cattle groups. PLoS ONE 11:e0154057

    Article  PubMed  PubMed Central  Google Scholar 

  • Rair DS, Norsworthy JK, Johnson DB, Scott RC, Bagavathiannan M (2011) Glyphosate resistance in a Johnsongrass (Sorghum halepense) biotype from Arkansas. Weed Sci 59:299–304

    Article  Google Scholar 

  • Rimando AM, Dayan FE, Czarnota MA, Weston LA, Duke SO (1998) A new photosystem II electron transfer inhibitor from Sorghum bicolor. J Nat Prod 61:927–930

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Robels E, Chandler JM, Senseman SA, Prostko EP (1999) Influence of growth stage and herbicide rate on postemergence Johnsongrass (Sorghum halepense) control. Weed Technol 13:525–529

    Article  Google Scholar 

  • Rout ME (2005) Sorghum halepense displaces the common prairie grass Schizachyrium scoparium: the possible role of allelopathy. Masters thesis, The University of Texas at Arlington, Arlington. p 51

  • Rout ME, Callaway RM (2009) An invasive plant paradox. Science 324:724–725

    Article  Google Scholar 

  • Rout ME, Chrzanowski TH, Smith WK, Gough L (2013) Ecological impacts of the invasive grass Sorghum halepense on native tallgrass prairie. Bio Inv 15:327–339

    Article  Google Scholar 

  • Sarpe N, Roibu C, Negrila E, Bodescu F, Fuia S, Popa C, Beraru C (2000) Chemical control of perennial and annual weeds in herbicide resistant soybean crops. Mededelingen 66:743–746

    Google Scholar 

  • Scarabel L, Panozzo S, Savoia W, Sattin M (2014) Target-site ACCase-resistant johnsongrass (Sorghum halepense) selected in summer dicot crops. Weed Technol 28:307–315

    Article  CAS  Google Scholar 

  • Schreiner IH, Nafus DM, Dumaliang N (1990) Growth and survival of the Asian corn borer Ostrinia furnacalis Guenée (Lep: Pyralidae) on alternative hosts in Guam. Int J Pest Manag 36:93–96

    Google Scholar 

  • Sezen UU, Barney JN, Atwater DZ et al (2016) Multi-phase US spread and habitat switching of a post-columbian invasive Sorghum halepense. PloS ONE 11:e0164584

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp D, Simon BK (2002) AusGrass: grasses of Australia. Australian biological resources study. Department of the environment, Canberra

    Google Scholar 

  • Shou-hui W, Chaoxian Z, Chunhua L (2008) Seed germination behavior of a worst exotic weed species of Johnsongrass (Sorghum halepense). Sci Agric Sin 41:116–121

    Google Scholar 

  • Smeda RJ, Snipes CE, Barrentine WL (1997) Identification of graminicide-resistant Johnsongrass (Sorghum halepense). Weed Sci 45:132–137

    Article  CAS  Google Scholar 

  • Smeda RJ, Currie RS, Rippee JH (2000) Fluazifop-p resistance expressed as a dominant trait in sorghum (Sorghum bicolor). Weed Technol 14:397–401

    Article  CAS  Google Scholar 

  • Snyder SA (1992) Sorghum halepense. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Logan

    Google Scholar 

  • Tarr SA (1962) Diseases of sorghum, sudangrass and broom corn. Oxford University Press, Oxford

    Google Scholar 

  • Tilley AM, Walker HL (2002) Evaluation of Curvularia intermedia (Cochliobolus intermedius) as a potential microbial herbicide for large crabgrass (Digitaria sanguinalis). Biol Cont 25:12–21

    Article  Google Scholar 

  • Toth V, Lehoczky E (2005) Investigations on the germination depth of Johnson grass (Sorghum halepense [L.] pers). Comm Agric Appl Biol Sci 71:803–808

    Google Scholar 

  • Uddin MR, Park KW, Kim YK, Park SU, Pyon JY (2010) Enhancing sorgoleone levels in grain sorghum root exudates. J Chem Ecol 36:914–922

    Article  CAS  PubMed  Google Scholar 

  • Uludag A, Gozcu D, Rusen M, Guvercin RS, Demir A (2007) The effect of Johnsongrass densities (Sorghum halepense L. Pers.) on cotton yield. Pak J Biol Sci 10:523–525

    Article  PubMed  Google Scholar 

  • Uremis I, Arslan M, Uludag A, Sangun M (2009) Allelopathic potentials of residues of 6 brassica species on johnsongrass [Sorghum halepense (L.) Pers.]. Afr J Biotechnol 8:3497–3501

    CAS  Google Scholar 

  • Uva RH, Neal JC, DiTomaso JM (1997) Weeds of the Northeast. Comstock Publishing Associates, Cornell University Press, Ithaca

    Google Scholar 

  • Valverde BE, Gressel J (2006) Dealing with the evolution and spread of Sorghum halepense glyphosate resistance in Argentina. Consultancy Report to SENASA, Buenos Aires. http://www.sinavimo.gov.ar/files/senasareport2006.pdf

  • Vega J, Owen M, Pitty A (1995) Organisms associated with Johnsongrass [Sorghum halepense (L.) Pers.] in Honduras’. Rev Ceiba 36:189–195

    Google Scholar 

  • Vidotto F, Fogliatto S, Milan M, Ferrero A (2016) Weed communities in Italian maize fields as affected by pedo-climatic traits and sowing time. Eur J Agron 74:38–46

    Article  Google Scholar 

  • Vila-Aiub MM, Balbi MC, Gundel PE, Ghersa CM, Powles SB (2007) Evolution of glyphosate-resistant Johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci 55:566–571

    Article  CAS  Google Scholar 

  • Vila-Aiub MM, Gundel PE, Yu Q, Powles SB (2013) Glyphosate resistance in Sorghum halepense and Lolium rigidum is reduced at suboptimal growing temperatures. Pest Manag Sci 69:228–232

    Article  CAS  PubMed  Google Scholar 

  • Vrbnicanin S, Malidza G, Stefanovic L (2009) Distribution of some harmful, invasive and quarantine weeds on the territory of Serbia, Part III: spatial distribution and frequency of eight weed species. Plant Doc 37:21–30

    Google Scholar 

  • Warwick SI, Black LD (1983) The biology of Canadian weeds. 61. Sorghum halepense (L.) Pers. Can J Plant Sci 63:997–1014

    Article  Google Scholar 

  • Weber E, Gut D (2005) A survey of weeds that are increasingly spreading in Europe. Agron Sustain Dev 25:109–121

    Article  Google Scholar 

  • Webster TM, Nichols R (2012) Changes in the weed species in the major agronomic crops of the United States: 1994/1995 to 2008/2009. Weed Sci 60:145–157

    Article  CAS  Google Scholar 

  • Weidenhamer JD, Boes PD, Wilcox DS (2009) Solid-phase Root Zone Extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186

    Article  CAS  Google Scholar 

  • Weston LA, Harman R, Mueller S (1989) Allelopathic potential of sorghum-sundangrass hybrid (sudex). J Chem Ecol 15:1855–1865

    Article  CAS  PubMed  Google Scholar 

  • Williams CS, Hayes RM (1984) Johnsongrass (Sorghum halepense) competition in soybeans (Glycine max). Weed Sci 32:498–501

    Article  Google Scholar 

  • Yazlik A, Uremis I (2015) The studies on the biology of seeds and rhizomes of Johnsongrass [(Sorghum halepense (L.) Pers.]. Derim 32:11–30

    Article  Google Scholar 

  • Yim K, Bayer DE (1997) Rhizome expression in a selected cross in the Sorghum genus. Euphytica 94:253–256

    Article  Google Scholar 

  • Zahoor F, Malik MA, Anser R, Shehzad M, Saleem A, Anser M, Siddiqui MH, Mubeen K, Raza SH (2015) Water use efficiency and rain water productivity of wheat under various tillage-glyphosate interactive systems. Cerc Agrono Moldova 48:25–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Masood Peerzada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peerzada, A.M., Ali, H.H., Hanif, Z. et al. Eco-biology, impact, and management of Sorghum halepense (L.) Pers.. Biol Invasions 25, 955–973 (2023). https://doi.org/10.1007/s10530-017-1410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1410-8

Keywords

Navigation