Skip to main content

Advertisement

Log in

Keeping ‘one step ahead’ of invasive species: using an integrated framework to screen and target species for detailed biosecurity risk assessment

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Predicting which species will become invasive in each country or region before they arrive is necessary to devise and implement measures for minimising the costs of biological invasions. Metaphorically, this is keeping one step ahead of invasive species. A structured and systematic approach for screening large numbers of species and identifying those likely to become invasive is proposed in this paper. The Pest Screening and Targeting (PeST) framework integrates heterogeneous information and data on species biogeography, biotic and abiotic factors to first determine a preliminary risk index, then uses this index to identify species for a second, more detailed, risk evaluation process to provide a final ranking. Using the PeST framework, 97 species of plant-parasitic nematodes were evaluated for their biosecurity risks to Australia. The species identified as greatest risks included both previously unrecognised and currently-recognised species. The former included Heterodera zeae, Meloidogyne graminicola, M. enterolobii, M. chitwoodi and Scutellonema bradys, while the latter included Bursaphelenchus xylophilus, Ditylenchus destructor, Globodera pallida, Heterodera glycines and H. filipjevi. Of the ten criteria used in the PeST framework, emerging pest status, pathogenicity, host range and species biogeography most strongly influenced overall risk. The PeST framework also identified species where research to fill in critical knowledge gaps will be most beneficial (e.g. Globodera tabacum, Heterodera cajani, H. filipjevi, Meloidogyne ethiopica, Pratylenchus fallax and P. sudanensis). Where data were available, the information and associated metadata gathered for the PeST framework can be used to guide biosecurity decision making; determine species which require pre border certification and target sampling at the borders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta N (1982) Influence of inoculum level and temperature on pathogenicity and population development of lesion nematodes on soybean. Nematropica 12:189–197

    Google Scholar 

  • Andersen MC, Adams H, Hope B, Powell M (2004a) Risk analysis for invasive species: general framework and research needs. Risk Anal 24:893–900

    Article  PubMed  Google Scholar 

  • Andersen MC, Adams H, Hope B, Powell M (2004b) Risk assessment for invasive species. Risk Anal 24:787–793

    Article  PubMed  Google Scholar 

  • Bacon SJ, Bacher S, Aebi A (2012) Gaps in border controls are related to quarantine alien insect invasions in Europe. PLoS ONE 7:e47689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker RHA, Black R, Copp GH, Haysom KA, Hulme PE, Thomas MB, Brown A, Brown M, Cannon RJC, Ellis J, Ellis M, Ferris R, Glaves P, Gozlan RE, Holt J, Howe L, Knight JD, MacLeod A, Moore NP, Mumford JD, Murphy ST, Parrott D, Sansford CE, Smith GC, St-Hilaire S, Ward NL (2008) The UK risk assessment scheme for all non-native species. In: Rabitsch W, Essl F, Klingenstein F (eds) Biological invasions—from ecology to conservation. NEOBIOTA, Berlin, pp 46–57

    Google Scholar 

  • Baker RHA, Benninga J, Bremmer J, Brunel S, Dupin M, Eyre D, Ilieva Z, Jarošík V, Kehlenbeck H, Kriticos DJ, Makowski D, Pergl J, Reynaud P, Robinet C, Soliman T, van der Werf W, Worner S (2012) A decision-support scheme for mapping endangered areas in pest risk analysis. EPPO Bull 42:65–73

    Article  Google Scholar 

  • Barney JN, Whitlow TH (2008) A unifying framework for biological invasions: the state factor model. Biol Invasions 10:259–272

    Article  Google Scholar 

  • Bayliss HR, Wilcox A, Stewart GB, Randall NP (2012) Does research information meet the needs of stakeholders? Exploring evidence selection in the global management of invasive species. Evid Policy 8:37–56

    Article  Google Scholar 

  • Bomford M (2008) Risk assessment models for establishment of exotic vertebrates in Australia and New Zealand. Invasive Animals Cooperative Research Centre, Canberra

  • Caley P, Lonsdale WM, Pheloung PC (2006) Quantifying uncertainty in predictions of invasiveness. Biol Invasions 8:277–286

    Article  Google Scholar 

  • Carnegie AJ, Cooper K (2011) Emergency response to the incursion of an exotic myrtaceous rust in Australia. Australas Plant Pathol 40:346–359

    Article  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

    Article  Google Scholar 

  • Cook DC, Fraser RW, Paini DR, Warden AC, Lonsdale WM, De Barro PJ (2011) Biosecurity and yield improvement technologies are strategic complements in the fight against food insecurity. PLoS ONE 6:e26084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Copp GH, Garthwaite R, Gozlan RE (2005) Risk identification and assessment of non-native freshwater fishes: a summary of concepts and perspectives on protocols for the UK. J Appl Ichthyol 21:371–373

    Article  Google Scholar 

  • Daehler C, Carino D (2000) Predicting invasive plants: prospects for a general screening system based on current regional models. Biol Invasions 2:93–102

    Article  Google Scholar 

  • Daehler CC, Strong DR Jr (1993) Prediction and biological invasions. Trends Ecol Evol 8:380

    Article  CAS  PubMed  Google Scholar 

  • Daehler CC, Virtue JG (2010) Likelihood and consequences: reframing the Australian weed risk assessment to reflect a standard model of risk. Plant Prot Q 25:52–55

    Google Scholar 

  • Daehler CC, Denslow JS, Ansari S, Kuo HC (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific Islands. Conserv Biol 18:360–368

    Article  Google Scholar 

  • Dahlstrom A, Hewitt CL, Campbell ML (2011) A review of international, regional and national biosecurity risk assessment frameworks. Mar Policy 35:208–217

    Article  Google Scholar 

  • Devorshak C (2012) Plant pest risk analysis: concepts and application. CABI Wallingford, UK

    Book  Google Scholar 

  • Elith J, Simpson J, Hirsch M, Burgman MA (2012) Taxonomic uncertainty and decision making for biosecurity: spatial models for myrtle/guava rust. Australas Plant Pathol 42:43–51

    Article  Google Scholar 

  • Emery RN, Poole MC, Botha JH, Hardie DC (2003) Semi-quantitative model for ranking exotic invertebrate pest threats to Western Australia. In: Wright EJ, Webb MC, Highley E (eds) Stored grain in Australia. In: Proceedings of the Australian postharvest technical conference, 25–27 June 2003, CSIRO Stored Grain Research Laboratory, Canberra, pp 102–107

  • EPPO (2011) Guidelines on pest risk analysis: decision support scheme for quarantine pests. European and Mediterranean Plant Protection Organization Europe, Paris

    Google Scholar 

  • FAO (2007a) FAO biosecurity toolkit. Available online http://www.fao.org/docrep/010/a1140e/a1140e00.htm. Accessed 2 April 2012

  • FAO (2007b) International plant protection convention new revised text. Available online http://www.ippc.int/file_uploaded//publications/13742.New_Revised_Text_of_the_International_Plant_Protectio.pdf. Accessed 25 May 2012

  • FAO-ISPM-11 (2013) International standards for phytosanitary measures no. 11 pest risk analysis for quarantine pests. Food and Agriculture Organization, Rome

  • Ferris H, Jetter KM, Zasada IA, Chitambar JJ, Venette RC, Klonsky KM, Becker JO (2003) Risk assessment of plant-parasitic nematodes. In: Sumner DA (ed) Exotic pests and diseases: biology and economics for biosecurity. Iowa State University Press, USA, pp 99–119

    Chapter  Google Scholar 

  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008) Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers Distrib 14:234–242

    Article  Google Scholar 

  • Griffin GD (1996) Importance of soil texture to the pathogenicity of plant-parasitic nematodes on rangeland grasses. Nematropica 26:27–37

    Google Scholar 

  • Grousset F, Petter F, Suffert M, Roy AS (2012) EPPO study on the risk of imports of plants for planting: description and details of the first outcomes. EPPO Bull 42:185–190

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hammitt JK, Zhang Y (2013) Combining experts’ judgments: comparison of algorithmic methods using synthetic data. Risk Anal 33:109–120

    Article  PubMed  Google Scholar 

  • Hayes KR (1998) Ecological risk assessment for ballast water introductions: a suggested approach. ICES J Mar Sci 55:201–212

    Article  Google Scholar 

  • Hayes KR (2003) Biosecurity and the role of risk assessment. In: Ruiz GM, Carlton JT (eds) Invasive species: vectors and management strategies. Island Press, Washington, pp 382–414

    Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  • Hodda M, Cook DC (2009) Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology 99:1387–1393

    Article  CAS  PubMed  Google Scholar 

  • Holt J (2006) Score averaging for alien species risk assessment: a probabilistic alternative. J Environ Manag 81:58–62

    Article  Google Scholar 

  • Holt J, Black R, Abdallah R (2006) A rigorous yet simple quantitative risk assessment method for quarantine pests and non-native organisms. Ann Appl Biol 149:167–173

    Article  Google Scholar 

  • Holt J, Leach AW, Knight JD, Griessinger D, MacLeod A, van der Gaag DJ, Schrader G, Mumford JD (2012) Tools for visualizing and integrating pest risk assessment ratings and uncertainties. EPPO Bull 42:35–41

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414

    Article  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    Article  PubMed  Google Scholar 

  • Keller RP, Springborn MR (2014) Closing the screen door to new invasions. Cons Lett 7:285–292

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kumschick S, Richardson DM (2013) Species-based risk assessments for biological invasions: advances and challenges. Divers Dist 19:1095–1105

    Article  Google Scholar 

  • Kumschick S, Bacher S, Dawson W, Heikkilä J, Sendek A, Pluess T, Robinson T, Kuehn I (2012) A conceptual framework for prioritization of invasive alien species for management according to their impact. NeoBiota 15:69–100

    Article  Google Scholar 

  • Lal R, Lal A (2006) Plant parasitic nematodes intercepted from seeds, soil clods and packing material under import quarantine. J New Seeds 8:49–60

    Article  Google Scholar 

  • Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc B Biol Sci 269:2407–2413

    Article  Google Scholar 

  • Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman MA, Dehnen-Schmutz K, Essl F, Hulme PE, Richardson DM, Sol D, Vilà M (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493

    Article  PubMed  Google Scholar 

  • Liu S, Hurley M, Lowell KE, Siddique A-BM, Diggle A, Cook DC (2011a) An integrated decision-support approach in prioritizing risks of non-indigenous species in the face of high uncertainty. Ecol Econ 70:1924–1930

    Article  Google Scholar 

  • Liu S, Sheppard A, Kriticos D, Cook D (2011b) Incorporating uncertainty and social values in managing invasive alien species: a deliberative multi-criteria evaluation approach. Biol Invasions 13:2323–2337

    Article  CAS  Google Scholar 

  • Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for U.S. policy and management. Ecol Appl 16:2035–2054

    Article  PubMed  Google Scholar 

  • MacDiarmid S, Pharo H (2003) Risk analysis: assessment, management and communication. Revue Scientifique Et Technique-Office International Des Epizooties 22:397–408

    CAS  Google Scholar 

  • Mack RN, Barrett SCH, deFur PL, MacDonald WL, Madden LV, Marshall DS, McCullough DG, McEvoy PB, Nyrop JP, Reichard SEH, Rice KJ, Tolin SA (2002) Predicting invasions of nonindigenous plants and plant pests. The National Academies Press, Washington

    Google Scholar 

  • MacLeod A, Pautasso M, Jeger MJ, Haines-Young R (2010) Evolution of the international regulation of plant pests and challenges for future plant health. Food Security 2:49–70

    Article  Google Scholar 

  • Marchetti MP, Moyle PB, Levine R (2004) Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw Biol 49:646–661

    Article  Google Scholar 

  • Mayr E, Ashlock PD (1991) Principles of systematic zoology. McGraw Hill Inc., New York

    Google Scholar 

  • McNeill M, Phillips C, Young S, Shah F, Aalders L, Bell N, Gerard E, Littlejohn R (2011) Transportation of nonindigenous species via soil on international aircraft passengers’ footwear. Biol Invasions 13:2799–2815

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Morin L, Paini DR, Randall RP (2013) Can global weed assemblages be used to predict future weeds? PLoS ONE 8:e55547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munns WR, Suter GW II, Damstra T, Kroes R, Reiter LW, Marafante E (2003) Integrated risk assessment—results from an international workshop. Human Ecol Risk Assess 9:379–386

    Article  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, Nijs LD, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Netherlands, pp 21–43

    Chapter  Google Scholar 

  • North DW (1995) Limitations, definitions, principles and methods of risk analysis. Revue Scientifique Et Technique De L Office International Des Epizooties 14:913–923

    CAS  Google Scholar 

  • Okabe K, Masuya H, Kanzaki N, Goka K (2012) Species risk assessment of microscopic exotic organisms associated with forest-related commodities and goods. Human Ecol Risk Assess J 18:1237–1254

    Article  CAS  Google Scholar 

  • Paini DR, Worner SP, Cook DC, De Barro PJ, Thomas MB (2010) Using a self-organizing map to predict invasive species: sensitivity to data errors and a comparison with expert opinion. J Appl Ecol 47:290–298

    Article  Google Scholar 

  • Paini DR, Bianchi FJJA, Northfield TD, De Barro PJ (2011) Predicting invasive fungal pathogens using invasive pest assemblages: testing model predictions in a virtual world. PLoS ONE 6:e25695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:290–298

    Article  Google Scholar 

  • Perrings C, Dehnen-Schmutz K, Touza J, Williamson M (2005) How to manage biological invasions under globalization. Trends Ecol Evol 20:212–215

    Article  PubMed  Google Scholar 

  • Petter F, Roy A, Smith I (2008) International standards for the diagnosis of regulated pests. Eur J Plant Pathol 121:331–337

    Article  Google Scholar 

  • Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251

    Article  Google Scholar 

  • Philibert A, Desprez-Loustau M-L, Fabre B, Frey P, Halkett F, Husson C, Lung-Escarmant B, Marçais B, Robin C, Vacher C, Makowski D (2011) Predicting invasion success of forest pathogenic fungi from species traits. J Appl Ecol 48:1381–1390

    Article  Google Scholar 

  • Plant Health Australia (2013) National plant biosecurity status report 2012. Available online http://www.planthealthaustralia.com.au/national-programs/national-plant-biosecurity-status-report. Accessed 27 May 2014

  • Plumas G, Taboada A, Gandarilla H (2002) Interceptions of plant parasitic nematodes in Cuba (1982–2000). Revista de Protección Vegetal 17:64–68

    Google Scholar 

  • Pyšek P, Richardson DM, Pergl J, Jarosík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Pergl J, Poboljšaj K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilà M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162

    Article  PubMed Central  PubMed  Google Scholar 

  • Pyšek P, Jarosik V, Pergl J (2011) Alien plants introduced by different pathways differ in invasion success: unintentional introductions as a threat to natural areas. PLoS ONE 6:e24890

    Article  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Rajan (2006) Surveillance and monitoring for plant parasitic nematodes—a challenge. EPPO Bull 36:59–64

  • Ricciardi A, Rasmussen JB (1998) Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Can J Fish Aquat Sci 55:1759–1765

    Article  Google Scholar 

  • Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM, Carpintero S, Espadaler X, Gomez C, Guenard B, Hartley S, Krushelnycky P, Lester PJ, McGeoch MA, Menke SB, Pedersen JS, Pitt JPW, Reyes J, Sanders NJ, Suarez AV, Touyama Y, Ward D, Ward PS, Worner SP (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108:220–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sahlin U, Ryden T, Nyberg CD, Smith HG (2011) A benefit analysis of screening for invasive species—base-rate uncertainty and the value of information. Meth Ecol Evol 2:500–508

    Article  Google Scholar 

  • Savicky P (2009) pspearman: spearman’s rank correlation test. R package version 0.2-5. http://CRAN.R-project.org/package=pspearman

  • Schaad NW, Abrams J, Madden LV, Frederick RD, Luster DG, Damsteegt VD, Vidaver AK (2006) An assessment model for rating high-threat crop pathogens. Phytopathology 96:616–621

    Article  CAS  PubMed  Google Scholar 

  • Schrader G, Unger J-G (2003) Plant quarantine as a measure against invasive alien species: the framework of the International Plant Protection Convention and the plant health regulations in the European Union. Biol Invasions 5:357–364

    Article  Google Scholar 

  • Singh SK, Hodda M, Ash GJ (2013a) Plant-parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. EPPO Bull 43:334–374

    Article  Google Scholar 

  • Singh SK, Hodda M, Ash GJ, Banks NC (2013b) Plant-parasitic nematodes as invasive species: characteristics, uncertainty and biosecurity implications. Ann Appl Biol 163:323–350

    Article  Google Scholar 

  • Singh SK, Paini DR, Ash GJ, Hodda M (2014) Prioritising plant-parasitic nematode species for biosecurity risk assessment using self organising maps. Biol Invasions 16:1515–1530

    Article  Google Scholar 

  • Stohlgren TJ, Schnase JL (2006) Risk analysis for biological hazards: what we need to know about invasive species. Risk Anal 26:163–173

    Article  PubMed  Google Scholar 

  • Suter GW, Vermeire T, Munns WR, Sekizawa J (2003) Framework for the integration of health and ecological risk assessment. Human Ecol Risk Assess 9:281–301

    Article  Google Scholar 

  • Sutherland WJ, Bailey MJ, Bainbridge IP, Brereton T, Dick JTA, Drewitt J, Dulvy NK, Dusic NR, Freckleton RP, Gaston KJ, Gilder PM, Green RE, Heathwaite AL, Johnson SM, Macdonald DW, Mitchell R, Osborn D, Owen RP, Pretty J, Prior SV, Prosser H, Pullin AS, Rose P, Stott A, Tew T, Thomas CD, Thompson DBA, Vickery JA, Walker M, Walmsley C, Warrington S, Watkinson AR, Williams RJ, Woodroffe R, Woodroof HJ (2008) Future novel threats and opportunities facing UK biodiversity identified by horizon scanning. J Appl Ecol 45:821–833

    Article  Google Scholar 

  • Tenente RCV, Manso ESC, Mendes MAS, Marques ASD, Figueira E (1996) Quarantine detection of nematodes and procedures for their eradication from vegetatively propagated materials imported by Brazil. Nematropica 26:187–191

    Google Scholar 

  • Trudgill DL (1991) Resistance to and tolerance of plant parasitic nematodes in plants. Annu Rev Phytopathol 29:167–192

    Article  Google Scholar 

  • Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RHA, Worner SP, Raboteaux NNG, McKenney DW, Dobesberger EJ, Yemshanov D, De Barro PJ, Hutchison WD, Fowler G, Kalaris TM, Pedlar J (2010) Pest risk maps for invasive alien species: a roadmap for improvement. Bioscience 60:349–362

    Article  Google Scholar 

  • Vilizzi L, Copp GH (2012) Application of FISK, an invasiveness screening tool for non-native freshwater fishes, in the Murray-Darling Basin (Southeastern Australia). Risk Anal 33:1432–1440

    Article  PubMed  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144

    Article  PubMed  Google Scholar 

  • Wittenberg R, Cock MJW (2001) Invasive alien species: a toolkit of best prevention and management practices. CABI, Wallingford, UK

    Book  Google Scholar 

  • Womersley CZ, Wharton DA, Higa LM (1998) Survival biology. In: Perry RN, Wright DJ (eds) Physiology and biochemistry of free-living and plant-parasitic nematodes. CABI, Walligford, UK pp 271–302

  • Worner SP, Gevrey M (2006) Modelling global insect pest species assemblages to determine risk of invasion. J Appl Ecol 43:858–867

    Article  Google Scholar 

  • Yemshanov D, Koch FH, Lyons DB, Ducey M, Koehler K (2012) A dominance-based approach to map risks of ecological invasions in the presence of severe uncertainty. Divers Distrib 18:33–46

    Article  Google Scholar 

  • Zhu L, Holt J, Black R (2000) New approaches to pest risk analysis for plant quarantine. In: Proceedings of the Brighton crop protection conference: pests & diseases, pp 495–498

Download references

Acknowledgments

The authors would like to thank Dr Dean Paini (CSIRO Ecosystem Sciences) for helpful discussions and assistance with SOM analysis. We are grateful to the following experts: Kerrie Davies (South Australia, University of Adelaide), Sharyn Taylor (Cooperative Research Centre for Plant Biosecurity), Lila Nambiar (Victoria, Department of Environment and Primary Industry), Vivian Vanstone and Sarah Collins (Western Australia, Department of Agriculture and Food), Hoong Pung (Tasmania, PERATCO Ltd), Barry Conde (Northern Territory, Department of Primary Industry and Fisheries), Loothfar Rahman (New South Wales, Department of Primary Industry), Farhat Shah (New Zealand, Plant and Food Research Ltd) and Nigel Bell (New Zealand, Ag Research); for participating in the email survey. We also thank John Roberts and Natalie Banks (CSIRO Ecosystem Sciences) and three anonymous reviewers for reading and commenting on earlier versions of the manuscript. The authors acknowledge the support of the Australian Government Cooperative Research Centres program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Ash, G.J. & Hodda, M. Keeping ‘one step ahead’ of invasive species: using an integrated framework to screen and target species for detailed biosecurity risk assessment. Biol Invasions 17, 1069–1086 (2015). https://doi.org/10.1007/s10530-014-0776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0776-0

Keywords

Navigation