Skip to main content
Log in

Invasion genetics of Chromolaena odorata (Asteraceae): extremely low diversity across Asia

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Chromolaena odorata is a native of America while a weed in many parts of tropical and subtropical regions in the world. Research into the invasion mechanisms of C. odorata contributes to a broader understanding of factors that facilitate plant adaptation, and also helps developing effective management strategies. In this study, we used three DNA fragments and six microsatellite loci: (1) to compare genetic diversity of C. odorata in its native and invaded regions; (2) to elucidate the invasive routes and identify possible source locations of C. odorata from America to Asia, with attempt to evaluate the possible mechanisms facilitating the successful invasion of this species. Despite two recorded independent introductions, DNA sequence data revealed only one single haplotype of C. odorata present throughout tropical Asia. All six microsatellite loci consistently exhibited extremely low genetic diversity in Asian populations compared to those from native ranges. Our results implied that there was likely only a single introduction to Asia, and Trinidad, Tobago and adjacent areas in the West Indies were the most likely source location of that introduction. The successful invasion of C. odorata in Asia may have been facilitated by the genotype with strong competitive ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17(1):24–30

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48

    Article  PubMed  CAS  Google Scholar 

  • Bennette F, Rao V (1968) Distribution of an introduced weed Eupatorium odoratum Linn. (Compositae) in Asia and Africa and possibility of its biological control. Int J Pest Manag 14(3):277–281

    Article  Google Scholar 

  • Biswas K (1934) Some foreign weeds and their distribution in India and Burma. Indian For 60(12):862–865

    Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144(1):1–11

    Article  PubMed  Google Scholar 

  • Chiang TY, Schaal BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39(4):245–250

    CAS  Google Scholar 

  • Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl 2(2):187–199

    Article  PubMed Central  Google Scholar 

  • Coleman JR (1989) Embryology and cytogenetics of apomictic hexaploid Eupatorium odoratum L. (Compositae). Rev Bras Genet 12:803–817

    Google Scholar 

  • Cruz Z, Muniappan R, Reddy GVP (2006) Establishment of Cecidochares connexa (Diptera: Tephritidae) in Guam and its effect on the growth of Chromolaena odorata (Asteraceae). Ann Entomol Soc Am 99(5):845–850

    Article  Google Scholar 

  • De Rouw A (1991) The invasion of Chromolaena odorata (L.) King & Robinson (ex Eupatorium odoratum), and competition with the native flora, in a rain forest zone, south-west Cote d’Ivoire. J Biogeogr 18(1):13–23

    Article  Google Scholar 

  • Dlugosch K, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Evol 17(1):431–449

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15

    Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14(4):135–139

    Article  PubMed  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97(13):7043–7050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Evol 19(19):4113–4130

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Evol 14(8):2611–2620

    CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    PubMed  CAS  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Frankham R, Ralls K (1998) Conservation biology-Inbreeding leads to extinction. Nature 392(6675):441–442

    Article  CAS  Google Scholar 

  • Fuentes-Contreras E, Figueroa C, Reyes M, Briones L, Niemeyer H (2004) Genetic diversity and insecticide resistance of Myzus persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone. Bull Entomol Res 94(01):11–18

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rossi D, Rank N, Strong DR (2003) Potential for self-defeating biological control? Variation in herbivore vulnerability among invasive Spartina genotypes. Evol Appl 13(6):1640–1649

    Google Scholar 

  • Gautier L (1992) Taxonomy and distribution of a tropical weed: Chromolaena odorata (L.) R. King and H. Robinson. Candollea 47(2):645–662

    Google Scholar 

  • Gautier L (1993) Reproduction of a pantropical weed: Chromolaena odorata (L.) R. King and H. Robinson. Candollea 48(1):179–193

    Google Scholar 

  • Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Evol 14(14):4275–4285

    CAS  Google Scholar 

  • Ghazoul J (2004) Alien abduction: disruption of native plant-pollinator interactions by invasive species. Biotropica 36(2):156–164

    Google Scholar 

  • Goodall J, Erasmus D (1996) Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa. Agric Ecosyst Environ 56(3):151–164

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3). http://www.unil.ch/izea/softwares/fstat.html

  • Hänfling B, Kollmann J (2002) An evolutionary perspective of biological invasions. Trends Ecol Evol 17(12):545–546

    Article  Google Scholar 

  • Harrison JS, Mondor EB (2011) Evidence for an invasive aphid “superclone”: extremely low genetic diversity in oleander aphid (Aphis nerii) populations in the southern United States. PLoS ONE 6(3):e17524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hawley DM, Hanley D, Dhondt AA, Lovette IJ (2006) Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Mol Evol 15(1):263–275

    CAS  Google Scholar 

  • Hodgins KA, Lai Z, Nurkowski K, Huang J, Rieseberg LH (2013) The molecular basis of invasiveness: differences in gene expression of native and introduced common ragweed (Ambrosia artemisiifolia) in stressful and benign environments. Mol Evol 22(9):2496–2510

    CAS  Google Scholar 

  • Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11(8):852–866

    Article  PubMed  Google Scholar 

  • Kirk H, Paul J, Straka J, Freeland JR (2011) Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America. Am J Bot 98(7):1180–1190

    PubMed  Google Scholar 

  • Kriticos D, Yonow T, McFadyen R (2005) The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Res 45(4):246–254

    Article  Google Scholar 

  • Lakshmi PV, Raju AJS, Ram DJ, Ramana KV (2011) Floral biology, psychophily, anemochory and zoochory in Chromolaena odorata (L.) King and HE Robins (Asteraceae). Pak J Sci Ind Res 54(1):1–8

    Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104(10):3883–3888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Le Roux JJ, Wieczorek AM, Wright MG, Tran CT (2007) Super-genotype: global monoclonality defies the odds of nature. PLoS ONE 2(7):e590

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DNASP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8(7):1461–1470

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Hollands Printing Ltd, Auckland

    Google Scholar 

  • Marrs RA, Sforza R, Hufbauer RA (2008) Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Mol Evol 17(19):4197–4208

    CAS  Google Scholar 

  • McFadyen REC (1989) Siam weed: a new threat to Australia’s north. Plant Prot Q 4(1):3–7

    Google Scholar 

  • McFadyen REC (1993) National report from Australia and the Pacific. Proceedings of the third international workshop on biological control and management of Chromolaena odorata. Abidjan, Ivory Coast, pp 39–44

    Google Scholar 

  • McFadyen REC (2002) Chromolaena in Asia and the Pacific: spread continues but control prospects improve. Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata. Durban, South Africa, pp 13–18

    Google Scholar 

  • McFadyen RC, Skarratt B (1996) Potential distribution of Chromolaena odorata (siam weed) in Australia, Africa and Oceania. Agric Ecosyst Environ 59(1–2):89–96

    Article  Google Scholar 

  • McFadyen REC, Desmier de Chenon R, Sipayung A (2003) Biology and host specificity of the Chromolaena stem gall fly, Cecidochares connexa (Macquart) (Diptera: Tephritidae). Aust J Entomol 42(3):294–297

    Article  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19(8):417–422

    Article  PubMed  Google Scholar 

  • Muniappan R, Bamba J (2000) Biological control of Chromolaena odorata: successes and failures. Proceedings of the tenth international symposium on biological control of weeds. Montana, USA, pp 81–85

    Google Scholar 

  • Muniappan R, Bamba J, Zachariades C, Strathie L (2002) Host-specificity testing of Cecidochares connexa, a biological control agent for Chromolaena odorata. Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata. Durban, South Africa, pp 134–136

    Google Scholar 

  • Muniappan R, Reddy GVP, Lai PY (2005) Distribution and biological control of Chromolaena odorata. In: Inderjit I (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag, Basel, pp 223–233

    Google Scholar 

  • Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species: Influence of mating system and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer & Associates, Sunderland, pp 210–228

    Google Scholar 

  • Pairon M, Petitpierre B, Campbell M, Guisan A, Broennimann O, Baret PV, Jacquemart AL, Besnard G (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105(6):881–890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paterson ID, Zachariades C (2013) ISSRs indicate that Chromolaena odorata invading southern Africa originates in Jamaica or Cuba. Biol Control 66(2):132–139

    Article  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Perdereau E, Bagnères AG, Bankhead-Dronnet S, Dupont S, Zimmermann M, Vargo E, Dedeine F (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes in France. Mol Evol 22(4):1105–1119

    CAS  Google Scholar 

  • Pérez JE, Nirchio M, Alfonsi C, Muñoz C (2006) The biology of invasions: the genetic adaptation paradox. Biol Invasions 8(5):1115–1121

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144(3):1237–1245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Poulin J, Weller SG, Sakai AK (2005) Genetic diversity does not affect the invasiveness of fountain grass (Pennisetum setaceum) in Arizona California and Hawaii. Divers Distrib 11(3):241–247

    Article  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13(6):288–294

    Article  PubMed  CAS  Google Scholar 

  • Prentis PJ, Woolfit M, Thomas-Hall SR, Ortiz-Barrientos D, Pavasovic A, Lowe AJ, Schenk PM (2010) Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant. Ann Bot 106(6):1009–1017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qin RM, Zheng YL, Valiente-Banuet A, Callaway RM, Barclay GF, Pereyra CS, Feng YL (2013) The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol 197(3):979–988

    Article  PubMed  Google Scholar 

  • Raimundo RLG, Fonseca RL, Schachetti-Pereira R, Townsend Peterson A, Lewinsohn TM (2007) Native and exotic distributions of siamweed (Chromolaena odorata) modeled using the genetic algorithm for rule-set production. Weed Sci 55(1):41–48

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249

    Google Scholar 

  • Ren M, Zhang Q, Zhang D (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Res 45(3):236–244

    Article  CAS  Google Scholar 

  • Roman J, Darling J (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22(9):454–464

    Article  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92(15):6813–6817

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84(8):1120

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GJ, Schilling EE (2000) Phylogeny and biogeography of Eupatorium (Asteraceae: Eupatorieae) based on nuclear ITS sequence data. Am J Bot 87(5):716–726

    Article  PubMed  CAS  Google Scholar 

  • Scott LJ, Lange CL, Graham GC, Yeates DK (1998) Genetic diversity and origin of siam weed (Chromolaena odorata) in Australia. Weed Technol 12(1):27–31

    Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99(24):15497–15500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73(5):1162–1169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tate JA (2002) Systematics and evolution of Tarasa (Malvaceae): an enigmatic Andean polyploid genus. Dissertation, The University of Texas

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsutsui ND (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97(11):5948–5953

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  Google Scholar 

  • Wang XY, Shen DW, Jiao J, Xu NN, Yu S, Zhou XF, Shi MM, Chen XY (2012) Genotypic diversity enhances invasive ability of Spartina alterniflora. Mol Evol 21:2542–2551

    CAS  Google Scholar 

  • Ward SM, Jasieniuk M (2009) Sampling weedy and invasive plant populations for genetic diversity analysis. Weed Sci 57(6):593–602

    Article  CAS  Google Scholar 

  • Waterhouse BM (1994) Discovery of Chromolaena odorata in northern Queensland, Australia. Chromolaena odorata Newsl 9:1–3

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White TH, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and amplifications. Academic, San Diego, pp 315–322

    Chapter  Google Scholar 

  • Wright S (1949) The genetical structure of populations. Ann Eugen 15(1):323–354

    Article  Google Scholar 

  • Ye WH, Mu HP, Cao HL, Ge XJ (2004) Genetic structure of the invasive Chromolaena odorata in China. Weed Res 44(2):129–135

    Article  CAS  Google Scholar 

  • Yu XQ, Li QM (2011) Isolation and characterization of microsatellite markers for a worldwide invasive weed, Chromolaena odorata (Asteraceae). Am J Bot 98(9):e259–e261

    Article  PubMed  CAS  Google Scholar 

  • Zachariades C, Day M, Muniappan R, Reddy GVP (2009) Chromolaena odorata (L.) King and Robinson (Asteraceae). In: Muniappan R, Reddy GVP, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, pp 130–162

    Chapter  Google Scholar 

  • Zalucki M, Day M, Playford J (2007) Will biological control of Lantana camara ever succeed? Patterns, processes and prospects. Biol Control 42(3):251–261

    Article  Google Scholar 

  • Zepeda-Paulo F, Simon JC, Ramírez C, Fuentes-Contreras E, Margaritopoulos J, Wilson A, Sorenson C, Briones L, Azevedo R, Ohashi D (2010) The invasion route for an insect pest species: the tobacco aphid in the New World. Mol Evol 19(21):4738–4752

    CAS  Google Scholar 

  • Zhang YY, Zhang DY, Barrett SCH (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Evol 19(9):1774–1786

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Feng Yulong, Liao Zhiyong, Yang Darong, Ci Xiuqin, Zhong Jinshun and Wu Jiafu for assistance in sample collection, and Gael Jean Campbell-Young and Katherine Downes for English editing of the manuscript. This work was supported by the State Key Program from the National Natural Science Foundation of China (Grant No. 30830027) and the Chinese Academy of Sciences (CAS) 135 program (XTBG-T01). TH was supported by a Curtin Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 Details of ITS sequences of Chromolaena odorata downloaded from Genebank (DOCX 24 kb)

10530_2014_669_MOESM2_ESM.docx

Supplementary material 2 Genetic diversity estimates of six microsatellite loci for Chromolaena odorata populations (DOCX 35 kb)

10530_2014_669_MOESM3_ESM.pdf

Supplementary material 3 Optimal population clusters (K) estimated from the posterior probability follow the method of △K (Evanno et al., 2005) (PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., He, T., Zhao, J. et al. Invasion genetics of Chromolaena odorata (Asteraceae): extremely low diversity across Asia. Biol Invasions 16, 2351–2366 (2014). https://doi.org/10.1007/s10530-014-0669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0669-2

Keywords

Navigation