Skip to main content
Log in

Extreme differences in population structure and genetic diversity for three invasive congeners: knotweeds in western North America

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Japanese, giant, and the hybrid Bohemian knotweeds (Fallopia japonica, F. sachalinensis and F. × bohemica) have invaded the western USA and Canada, as well as other regions of the world. The distribution of these taxa in western North America, and their mode of invasion, is relatively unresolved. Using amplified fragment length polymorphisms of 858 plants from 131 populations from British Columbia to California to South Dakota, we determined that Bohemian knotweed was the most common taxon (71 % of all plants). This result is in contrast to earlier reports of F. × bohemica being uncommon or non-existent in the USA, and also differs from the European invasion where it is rarer. Japanese knotweed was monotypic, while giant knotweed and Bohemian knotweed were genetically diverse. Our genetic data suggest that Japanese knotweed in western North America spreads exclusively by vegetative reproduction. Giant knotweed populations were mostly monotypic, with most containing distinct genotypes, suggesting local spread by vegetative propagules, whereas Bohemian knotweed spreads by both seed and vegetative propagules, over both long and short distances. The high relative abundance and genetic diversity of Bohemian knotweed make it a priority for control in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arthofer W (2010) tinyFLP and tinyCAT: software for automatic peak selection and scoring of AFLP data tables. Mol Ecol Res 10:385–388

    Article  CAS  Google Scholar 

  • Bailey JP (1989) Cytology and breeding behaviour of giant alien Polygonum species in Britain. Ph.D. Thesis, University of Leicester, UK

  • Bailey JP (1990) Breeding behaviour and seed production in alien giant knotweed in the British Isles. In: Anon (ed) The biology of invasive plants; a BES industrial ecology group symposium, pp 110–130. Richards, Moorhead and Laing, Ruthin, Clwyd, UK

  • Bailey JP, Stace CA (1992) Chromosome number, morphology, pairing, and DNA values of species and hybrids in the genus Fallopia; (Polygonaceae). Plant Syst Evol 180:29–52

    Article  Google Scholar 

  • Bailey J, Wisskirchen R (2006) The distribution and origins of Fallopia × bohemica (Polygonaceae) in Europe. Nord J Bot 24:173–199

    Article  Google Scholar 

  • Bailey JP, Child LE, Conolly AP (1996) A survey of the distribution of Fallopia × bohemica (Chrtek & Chrtkova) J. Bailey (Polygonaceae) in the British Isles. Watsonia 21:187–198

    Google Scholar 

  • Bailey J, Bímová K, Mandák B (2009) Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage for the “Battle of the Clones”. Biol Invasions 11:1189–1203

    Article  Google Scholar 

  • Bímová K, Mandák B, Pyšek P (2001) Experimental control of Reynoutria congeners: a comparative study of a hybrid and its parents. In: Brundu G, Brock J, Camarda I, Child L, Wade M (eds) Plant invasion: species ecology and ecosystem management. Backuys Publishing, Leiden, pp 283–290

    Google Scholar 

  • Bzdęga K, Janiak A, Tarłowska S, Kurowskab M, Tokarska-Guzika B, Szarejkob I (2012) Unexpected genetic diversity of Fallopia japonica from Central Europe revealed after AFLP analysis. Flora 207:636–645

    Article  Google Scholar 

  • Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Ehrich D (2006) AFLPDAT: a collection of r functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engler J, Abt K, Buhk C (2011) Seed characteristics and germination limitations in the highly invasive Fallopia japonica s.l. (Polygonaceae). Ecol Res 26:555–562

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forman J, Kesseli RV (2003) Sexual reproduction in the invasive species Fallopia japonica (Polygonaceae). Am J Bot 90:586–592

    Article  PubMed  Google Scholar 

  • Gammon M, Kesseli R (2010) Haplotypes of Fallopia introduced into the US. Biol Invasions 12:421–427

    Article  Google Scholar 

  • Gammon MA, Grimsby JL, Tsirelson D, Kesseli R (2007) Molecular and morphological evidence reveals introgression in swarms of the invasive taxa Fallopia japonica, F. sachalinensis, and F. × bohemica (Polygonaceae) in the United States. Am J Bot 94:948–956

    Article  PubMed  Google Scholar 

  • Gaskin J, Kazmer D (2009) Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA. Biol Invasions 11:1121–1130

    Article  Google Scholar 

  • Geng Y-P, Pan X-Y, Xu C-Y, Zhang W-J, Li B, Chen J-K, Lu B-R, Song Z-P (2007) Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol Invasions 9:245–256

    Article  Google Scholar 

  • GISD (2005) Polygonum cuspidatum. http://www.issg.org/database/species/ecology.asp?si=91&fr=1&sts=sss&lang=EN. Accessed 2012

  • Grevstad F, Shaw R, Bourchier R, Sanguankeo P, Cortat G, Reardon R (2013) Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori, candidates for biological control of invasive knotweeds in North America. Biol Control 65:53–62

    Article  Google Scholar 

  • Grimsby J, Kesseli R (2010) Genetic composition of invasive Japanese knotweed s.l. in the United States. Biol Invasions 12:1943–1946

    Article  Google Scholar 

  • Grimsby JL, Tsirelson D, Gammon MA, Kesseli R (2007) Genetic diversity and clonal vs. sexual reproduction in Fallopia spp. (Polygonaceae). Am J Bot 94:957–964

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hillis DM, Mable BK, Larson A, Davis SK, Zimmer EA (1996) Molecular systematics. Sinauer, Sunderland

    Google Scholar 

  • Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133:463–472

    Article  Google Scholar 

  • Krebs C, Mahy G, Matthies D, Schaffner U, Tiébré M-S, Bizoux J-P (2010) Taxa distribution and RAPD markers indicate different origin and regional differentiation of hybrids in the invasive Fallopia complex in central-western Europe. Plant Biol 12:215–223

    Article  CAS  PubMed  Google Scholar 

  • Ley AC, Hardy OJ (2013) Improving AFLP analysis of large-scale patterns of genetic variation–a case study with the Central African lianas Haumania spp (Marantaceae) showing interspecific gene flow. Mol Ecol 22:1984–1997

    Article  CAS  PubMed  Google Scholar 

  • Mandák B, Bimova K, Pysek P, Stepanek J, Plackova I (2005) Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. Plant Syst Evol 253:219–230

    Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Moody M, Les D (2007) Geographic distribution and genotypic composition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) populations in North America. Biol Invasions 9:559–570

    Article  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422

    Article  PubMed  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley Interscience, New York

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards CL, Walls RL, Bailey JP, Parameswaran R, George T, Pigliucci M (2008) Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s. l. (Fallopia japonica and F. × bohemica, Polygonaceae). Am J Bot 95:931–942

    Article  PubMed  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    Article  PubMed  Google Scholar 

  • Rohlf FJ (1994) NTSYS-pc: numerical taxonomy and multivariate analysis system. Exeter Software, Setauket

    Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol Appl 12:1652–1660

    Article  Google Scholar 

  • Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European union. Biol Control 49:105–113

    Article  Google Scholar 

  • Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Bot Neerl 44:363–383

    Article  Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (* and Other Methods). Sunderland, Massachusetts: Sinauer Associates

  • Tiébré M-S, Bizoux J-P, Hardy OJ, Bailey JP, Mahy G (2007a) Hybridization and morphogenetic variation in the invasive alien I (Polygonaceae) complex in Belgium. Am J Bot 94:1900–1910

    Article  PubMed  Google Scholar 

  • Tiébré MS, Vanderhoeven S, Saad L, Mahy G (2007b) Hybridization and sexual reproduction in the invasive alien I (Polygonaceae) complex in Belgium. Ann Bot 99:193–203

    Article  PubMed Central  PubMed  Google Scholar 

  • USDA, NRCS (2012) The PLANTS Database. (http://plants.usda.gov). National Plant Data Team, Greensboro, NC 27401-4901 USA. Accessed Jan 2013

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber E (2003) Invasive plants in the world: a reference guide to environmental weeds. CABI-Publishing, London

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson LM (2007). Key to identification of invasive knotweeds in British Columbia. B.C. Min. For. and Range, For. Prac. Br., Kamloops, B.C. http://www.for.gov.bc.ca/hra/Publications/invasive_plants/Knotweed_key_BC_2007.pdf. Accessed 28 Jan 2013

  • Zika P, Jacobson A (2003) An overlooked hybrid Japanese knotweed (Polygonum cuspidatum × sachalinense; Polygonaceae) in North America. Rhodora 105:143–152

    Google Scholar 

Download references

Acknowledgments

This research was made possible in part by funding from the Bureau of Land Management (Montana, South and North Dakota) Billings Office. Thanks to K. Mann and J. Lassey for generating AFLP data. Thanks to our many collectors (listed in “Appendix 1” in Supplementary material) for sending in population collections of knotweed, to J. Andreas for assisting in recruitment of collectors in Oregon and Washington, and two anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Gaskin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 2564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaskin, J.F., Schwarzländer, M., Grevstad, F.S. et al. Extreme differences in population structure and genetic diversity for three invasive congeners: knotweeds in western North America. Biol Invasions 16, 2127–2136 (2014). https://doi.org/10.1007/s10530-014-0652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0652-y

Keywords

Navigation