Skip to main content

Advertisement

Log in

Alien plant species distribution in the European Alps: influence of species’ climatic requirements

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The paper provides the first estimate of the role of abiotic and anthropogenic variables driving both alien plant species richness and composition covering the whole region of the European Alps. To establish and spread in a new area, alien plants must be able to tolerate the prevailing climatic conditions. We therefore tested the hypothesis that climatic requirements modified by bioclimatic origin and elevational distribution influence the distribution of alien plants in the Alps. Despite most alien plant species showing a relatively restricted distribution in the Alps, some regions, however, were already more strongly invaded. Most of these species were adapted to warmer conditions, probably constrained by climatic factors. Environmental heterogeneity was the most important predictor of alien plant species richness, followed by anthropogenic disturbance. Due to the political/artificial delineation of the administrative districts in the Alps (i.e., ignoring ecological conditions) we did not find a direct influence of climatic constraints on alien distribution. Anyway, northern Holarctic alien species showed a broader climatic tolerance and the capability to grow across a wide environmental range. Our results also reveal a strong influence of human pressure on warmer tropical species, despite their low adaptability to anthropogenic habitats. To this aim, managers would profit from early warnings to prevent future invasions. Considering bioclimatic origin, our study can aid in identifying potentially invasive species in a more regional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser DM et al (2004) Flora alpina. Zanichelli, Bologna

    Google Scholar 

  • Agrawala S (2007) Climate change in the European Alps: adapting winter tourism and natural hazards management. Organisation for economic Co-operation and development (OECD), Paris

  • Alexander JM, Kueffer C, Daehler CC et al (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66

    Article  Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Baayen RH (2011) languageR: Data sets and functions with “Analyzing Linguistic Data: A practical introduction to statistics”. R package version 1.4. http://CRAN.R-project.org/package=languageR

  • Barni E, Bacaro G, Falzoi S et al (2012) Establishing climatic constraints shaping the distribution of alien plant species along the elevation gradient in the Alps. Plant Ecol 213:757–767

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4

  • Bätzing W (2005) Die Alpen: Geschichte und Zukunft einer europäischen Kulturlandschaft, 3rd edn. Beck, Munich

    Google Scholar 

  • Becker T, Dietz H, Billeter R et al (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183

    Article  Google Scholar 

  • Böhm R, Auer I, Brunetti M et al (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801

    Article  Google Scholar 

  • Chytrý M, Jarosik V, Pyšek P et al (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553

    Article  PubMed  Google Scholar 

  • Dainese M, Bragazza L (2012) Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alp Bot 122:11–21

    Article  Google Scholar 

  • Dainese M, Poldini L (2012) Does residence time affect responses of alien species richness to environmental and spatial processes. NeoBiota 14:47–66

    Article  Google Scholar 

  • Davies KF, Chesson P, Harrison S et al (2005) Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship. Ecology 86:1602–1610

    Article  Google Scholar 

  • de Albuquerque FS, Castro-Diez P, Rueda M et al (2011) Relationships of climate, residence time, and biogeographical origin with the range sizes and species richness patterns of exotic plants in Great Britain. Plant Ecol 212:1901–1911

    Article  Google Scholar 

  • Dehnen-Schmutz K (2011) Determining non-invasiveness in ornamental plants to build green lists. J Appl Ecol 48:1374–1380

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by plants and animals. Methuen, London

    Book  Google Scholar 

  • Essl F, Dullinger S, Rabitsch W et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108:203–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fletcher TD (2010) QuantPsyc: quantitative psychology tools. R package version 1.4. http://CRAN.R-project.org/package=QuantPsyc

  • Freckleton RP (2002) On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J Anim Ecol 71:542–545

    Article  Google Scholar 

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900

    Article  Google Scholar 

  • Gassó N, Sol D, Pino J et al (2009) Exploring species attributes and site characteristics to assess plant invasions in Spain. Divers Distrib 15:50–58

    Article  Google Scholar 

  • Gassó N, Thuiller W, Pino J et al (2012) Potential distribution range of invasive plant species in Spain. NeoBiota 12:25–40

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Haider S, Alexander J, Dietz H et al (2010) The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol Invasions 12:4003–4018

    Article  Google Scholar 

  • Hanspach J, Kühn I, Pyšek P et al (2008) Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspect Plant Ecol Evol Syst 10:241–250

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Hulme PE (2008) Contrasting alien and native plant species–area relationships: the importance of spatial grain and extent. Glob Ecol Biogeogr 17:641–647

    Article  Google Scholar 

  • Hulme PE (2011) Addressing the threat to biodiversity from botanic gardens. Trends Ecol Evol 26:168–174

    Article  PubMed  Google Scholar 

  • Jakobs G, Kueffer C, Daehler CC (2010) Introduced weed richness across altitudinal gradients in Hawai’i: humps, humans and water-energy dynamics. Biol Invasions 12:4019–4031

    Article  Google Scholar 

  • Keil P, Hawkins BA (2009) Grids versus regional species lists: are broad-scale patterns of species richness robust to the violation of constant grain size? Biodivers Conserv 18:3127–3137

    Article  Google Scholar 

  • Kueffer C (2010) Alien plants in the Alps: status and future invasion risks. In: Price MF (ed) Europe’s ecological backbone: recognising the true value of our mountains. European Environment Agency (EEA), Copenhagen, pp 153–154

    Google Scholar 

  • Kühn I, Klotz S (2006) Urbanization and homogenization–comparing the floras of urban and rural areas in Germany. Biol Conserv 127:292–300

    Article  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Landolt E (2010) Flora indicativa: ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Verlag Haupt, Bern

    Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Leung B, Lodge DM, Finnoff D et al (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc Lond B Biol Sci 269:2407–2413

    Article  Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  • Marini L, Gaston KJ, Prosser F et al (2009) Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Glob Ecol Biogeogr 18:652–661

    Article  Google Scholar 

  • Marini L, Battisti A, Bona E et al (2012) Alien and native plant life-forms respond differently to human and climate pressures. Glob Ecol Biogeogr 21:534–544

    Article  Google Scholar 

  • Marini L, Bertolli A, Bona E et al (2013) Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains. Glob Ecol Biogeogr 22:450–460

    Article  Google Scholar 

  • Martin PH, Marks PL (2006) Intact forests provide only weak resistance to a shade-tolerant invasive Norway maple (Acer platanoides L.). J Ecol 94:1070–1079

    Article  Google Scholar 

  • Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7:142–149

    Article  Google Scholar 

  • Matlack GR, Schaub JR (2011) Long-term persistence and spatial assortment of nonnative plant species in second-growth forests. Ecography 34:649–658

    Article  Google Scholar 

  • McDougall KL, Alexander JM, Haider S et al (2011a) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111

    Article  Google Scholar 

  • McDougall KL, Khuroo AA, Loope LL et al (2011b) Plant invasions in mountains: global lessons for better management. Mt Res Dev 31:380–387

    Article  Google Scholar 

  • Melbourne BA, Cornell HV, Davies KF et al (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94

    Article  PubMed  Google Scholar 

  • Nagy L (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. Proc R I Acad 106:335–341

    Article  Google Scholar 

  • Nogués-Bravo D, Araújo MB (2006) Species richness, area and climate correlates. Glob Ecol Biogeogr 15:452–460

    Article  Google Scholar 

  • Oksanen J, Blanchet F, Kindt R et al (2011) vegan: community ecology package. R package version 2.0-2. Available at http://CRAN.R-project.org/package=vegan

  • Pauchard A, Kueffer C, Dietz H et al (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486

    Article  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O et al (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Pyšek P, Jarosik V (2005) Residence time determines the distribution of alien plants. In: Inderjit S (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag, Basel, pp 77–96

    Google Scholar 

  • Pyšek P, Bacher S, Chytrý M et al (2010a) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19:317–331

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE et al (2010b) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162

    Article  PubMed Central  PubMed  Google Scholar 

  • Rejmánek M et al (1989) Invasibility of plant communities. In: Drake J, diCastri F, Groves R (eds) Biological invasions: a global perspective. Wiley, New York, pp 369–388

    Google Scholar 

  • Seipel T, Kueffer C, Rew LJ et al (2012) Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Glob Ecol Biogeogr 21:236–246

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Siniscalco C, Barni E, Bacaro G (2011) Non-native species distribution along the elevation gradient in the western Italian Alps. Plant Biosyst 145:150–158

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/

  • Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Von Holle B, Delcourt HR, Simberloff D (2003) The importance of biological inertia in plant community resistance to invasion. J Veg Sci 14:425–432

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Ann Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Williamson M, Dehnen-Schmutz K, Kühn I et al (2009) The distribution of range sizes of native and alien plants in four European countries and the effects of residence time. Divers Distrib 15:158–166

    Article  Google Scholar 

  • Zobel M (1997) The relative of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David Aeschimann for the vector map of administrative divisions present in Flora Alpina. We are grateful to Christoph Kueffer and an anonymous referee for the insightful comments which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Dainese.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dainese, M., Kühn, I. & Bragazza, L. Alien plant species distribution in the European Alps: influence of species’ climatic requirements. Biol Invasions 16, 815–831 (2014). https://doi.org/10.1007/s10530-013-0540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0540-x

Keywords

Navigation