Skip to main content

Advertisement

Log in

Invasive moss alters patterns in life-history traits and functional diversity of spiders and carabids

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive plants can modify terrestrial habitats and affect the natural faunal composition. In acidic coastal dunes the invasive moss Campylopus introflexus can form dense carpets that largely replace native vegetation. As shown in a previous study, moss invasion affects habitat structure and ground-dwelling arthropod diversity. We suggested that including the functional diversity concept in the analysis of moss invasion impacts may offer further insights. We used pitfall trap data to compare trait composition and functional diversity of spiders and carabids in (a) invaded, moss-rich (C. introflexus) and (b) native, lichen-rich (Cladonia spp.) acidic coastal dunes. Moss invasion induced shifts in the trait values body size and feeding preference (carabids) and hunting mode (spiders): Species were smaller in native sites, and the percentages of web-building spiders and phytophagous beetles were reduced in invaded sites. Furthermore, moss invasion led to a more heterogeneous trait composition for spiders, and changed functional diversity of both arthropod groups, although with the opposite effects: While spiders were functionally more diverse in invaded sites, moss invasion reduced carabid beetles’ functional diversity. We also observed changes in the relationship between species richness and functional diversity that indicate a high functional similarity for spiders but a lower one for carabid beetles in native grey dunes. C. introflexus invasion not only alters the arthropod diversity and assemblage structure of endangered acidic coastal dunes but also interferes at a functional level. These results provide further insight into the way plant invasions might alter the structure and function of ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almquist S (1970) Thermal tolerances and preferences of some dune-living spiders. Oikos 21:230–236

    Article  Google Scholar 

  • Almquist S (1971) Resistance to desiccation in some dune-living spiders. Oikos 22:225–229

    Article  Google Scholar 

  • Almquist S (1973) Habitat selection by spiders on coastal sand dunes in Scania, Sweden. Entomol Scand 4:134–154

    Article  Google Scholar 

  • Almquist S (2005) Swedish Araneae, part 1: families Atypidae to Hahniidae (Linyphiidae excluded). Insect Syst Evol Suppl 62:1–284

    Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  • Badejo MA, Nathaniel TI, Tian G (1998) Abundance of springtails (Collembola) under four agroforestry tree species with contrasting litter quality. Biol Fertil Soils 27:15–20

    Article  Google Scholar 

  • Bauer L (1972) Handbuch der Naturschutzgebiete der Deutschen Demokratischen Republik. Band 1: Bezirke Rostock, Schwerin und Neubrandenburg. Urania-Verlag, Leipzig

  • Biermann R, Daniëls FJA (2001) Vegetationsdynamik im Spergulo-Corynephoretum unter besonderer Berücksichtigung des neophytischen Laubmooses Campylopus introflexus. Braunschweiger Geobot Arb 8:27–37

    Google Scholar 

  • Bonte D, Criel P, Van Thournout I, Maelfait JP (2003) Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea. J Biogeogr 30:901–911

    Article  Google Scholar 

  • Bonte D, Baert L, Lens L, Maelfait JP (2004) Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. Ecography 27:343–349

    Article  Google Scholar 

  • Buchholz S (2010a) Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodivers Conserv 19:2565–2595

    Article  Google Scholar 

  • Buchholz S (2010b) Factors determining daily rhythms of epigeic arthropods—activity patterns of spiders in dry open habitats. Entomol Gen 32:251–264

    Google Scholar 

  • Bultman TL, DeWitt DJ (2008) Effect of an invasive ground cover plant on the abundance and diversity of a forest floor spider assemblage. Biol Invasions 10:749–756

    Article  Google Scholar 

  • Choi W II, Choi KS, Lyu DP, Lee JS, Lim J, Lee S, Shin SC, Chung YJ, Park YS (2010) Seasonal changes of functional groups in coleopteran communities in pine forests. Biodivers Conserv 19:2291–2305

    Article  Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  • D′Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Google Scholar 

  • Davis MA (2009) Invasion biology. Oxford Univ Press, Oxford

    Google Scholar 

  • Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689

    Article  PubMed  CAS  Google Scholar 

  • Duffey E (1968) An ecological analysis of the spider fauna of sand dunes. J Anim Ecol 37:641–674

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Foelix R (1996) Biology of spiders. Oxford University Press, Oxford

    Google Scholar 

  • Folke CS, Carpenter S, Walker B, Scheffer M, Elmquist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Syst 35:557–581

    Article  Google Scholar 

  • Gratton C, Denno RF (2006) Arthropod food web restoration following removal of an invasive wetland plant. Ecol Appl 16:622–631

    Article  PubMed  Google Scholar 

  • Heimer S, Nentwig W (1991) Spinnen Mitteleuropas: ein Bestimmungsbuch. Parey, Berlin

    Google Scholar 

  • Hejda M, Pyšek P, Pergl J, Sádlo J, Chytrý M, Jarošík V (2009) Invasion success of alien plants: do habitat affinities in the native distribution range matter? Global Ecol Biogeogr 18:372–382

    Article  Google Scholar 

  • Henatsch B, Blick T (1993) Zur tageszeitlichen Laufaktivität der Laufkäfer, Kurzflügelkäfer und Spinnen in einer Hecke und einer angrenzenden Brachfläche (Carabidae, Staphylinidae, Araneae). Mitt Dtsch Ges All Angew Ent 8:529–536

    Google Scholar 

  • Herrera AM, Dudley TL (2003) Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol Invasions 5:167–177

    Article  Google Scholar 

  • Heydemann B (1957) Die Biotopstruktur als Raumwiderstand und Raumfülle für die Tierwelt. Verh Dtsch Zool Ges 1956:332–347

    Google Scholar 

  • Holdaway RJ, Sparrow AD (2006) Assembly rules operating along a primary riverbed-grassland successional sequence. J Ecol 94:1092–1102

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol Invasions 10:177–190

    Article  Google Scholar 

  • Ketner-Oostra R, Sykora KV (2004) Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970 s, related to grass and moss encroachment. Phytocoenologia 34:521–549

    Article  Google Scholar 

  • Ketner-Oostra R, Sykora KV (2008) Vegetation change in a lichen-rich inland drift sand area in the Netherlands. Phytocoenologia 38:267–286

    Article  Google Scholar 

  • Kreuels M (2001) Die Tagesphänologie epigäischer Spinnen (Arachnida: Araneae) im NSG Hasental-Kregenberg bei Marsberg (NRW). Arachnol Mitt 22:19–28

    Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laliberté E, Shipley B (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-11

  • Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning. Biol Conserv 142:625–637

    Article  Google Scholar 

  • Litt AR, Steidl RJ (2010) Insect assemblages change along a gradient of invasion by a nonnative grass. Biol Invasions 12:3449–3463

    Article  Google Scholar 

  • Loreau M (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos T R Soc B 365:49–60

    Article  Google Scholar 

  • Ma Z, Gan X, Cai Y, Chen J, Li B (2010) Effects of exotic Spartina alterniflora on the habitat patch associations of breeding saltmarsh birds at the Chongming Dongtan in the Yangtze River estuary, China. Biol Invasions 13:1673–1686

    Article  Google Scholar 

  • Mack MC, D’Antonio CM (2003) Exotic grasses alter controls over soil nitrogen dynamics in Hawaiian woodland. Ecol Appl 13:154–166

    Article  Google Scholar 

  • Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893

    Article  Google Scholar 

  • Müller-Motzfeld G (2006) Band 2, Adephaga 1: Carabidae (Laufkäfer). In: Freude H, Harde KW, Lohse GA, Klausnitzer B (eds) Die Käfer Mitteleuropas. Spektrum-Verlag

  • Nentwig W, Hänggi A, Kropf C, Blick T (2010) Spiders of Europe. www.araneae.unibe.ch

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MH, Wagner H (2011) The vegan Package Version 1.17-11. http://CRAN.R-project.org/package=vegan

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758

    Article  PubMed  Google Scholar 

  • Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985

    Article  PubMed  Google Scholar 

  • Petchey OL, O’Gorman EJ, Flynn DFB (2009) A functional guide to functional diversity measures. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning and human wellbeing: an ecological and economic perspective. Oxford University Press, Oxford, pp 49–60

    Chapter  Google Scholar 

  • Pétillon J, Canard A, Ysnel F (2006) Spiders as indicators of microbabitat changes after a grass invasion in salt-marshes: synthetic results from a case study in the Mont-Saint-Michel Bay. Cah Biol 47:11–18

    Google Scholar 

  • Pétillon J, Lambeets K, Montaigne W, Maelfait JP, Bonte D (2010) Habitat structure modified by an invasive grass enhances inundation withstanding in a salt-marsh wolf spider. Biol Invasions 12:3219–3226

    Article  Google Scholar 

  • Pritekel C, Whittemore-Olson A, Snow N, Moore JC (2006) Impacts from invasive plant species and their control on the plant community and belowground ecosystem at Rocky Mountain National Park, USA. Appl Soil Ecol 32:132–141

    Article  Google Scholar 

  • Reinhard H (1962) Klimatologie. Atlas der Bezirke Rostock, Schwerin und Neubrandenburg. VEB, Rostock

  • Ribera I, Foster GN, Downie IS, McCracken DI, Abernethy VJ (1999) A comparative study of the morphology and life traits of Scottish ground beetles (Coleoptera, Carabidae). Ann Zool Fenn 36:21–37

    Google Scholar 

  • Ribera I, Dolédec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129

    Article  Google Scholar 

  • Roberts MJ (1987) The spiders of Great Britain and Ireland. Volume 2: Linyphiidae and checklist. Harley Books

  • Roberts MJ (1996) Spiders of Britain and Northern Europe. Collins

  • Ruzicka V (1985) The size groups in the spiders (Araneae) and carabids (Col. Carabidae). Acta Univ Carolinae Biol 1982–1984:77–107

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Osterheld M, LeRoy Poff N, Sykes MT, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

  • Sax DF, Kinlan BP, Smith KF (2005) A conceptual framework for comparing species assemblages in native and exotic habitats. Oikos 108:457–464

    Article  Google Scholar 

  • Scheidler M (1990) Influence of habitat structure and vegetation architecture on spiders. Zool Anz 225:333–340

    Google Scholar 

  • Schirmel J (2011) Response of the grasshopper Myrmeleotettix maculatus (Orthoptera: Acrididae) to invasion by the exotic moss Campylopus introflexus in acidic coastal dunes. J Coast Conserv 15:159–162

    Article  Google Scholar 

  • Schirmel J, Timler L, Buchholz S (2011) Impact of the invasive moss Campylopus introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic Sea. Biol Invasions 13:605–620

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org

  • Tilman D (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Topp W, Kappes H, Rogers F (2008) Response of ground-dwelling beetle (Coleoptera) assemblages to giant knotweed (Reynoutria spp.) invasion. Biol Invasions 10:381–390

    Article  Google Scholar 

  • Turin H (2000) De Nederlandse Loopkevers. Verspreiding en oecologie (Coleoptera: Carabidae). European Invertebrate Survey Nederland

  • Ulrich W, Hajdamowicz I, Zalewski M, Stanska M, Ciurzycki W, Tykarski P (2010) Species assortment or habitat filtering: a case study of spider communities on lake islands. Ecol Res 25:375–381

    Article  Google Scholar 

  • Villà M, Basnou C, Pyešek P, Josefsson M, Genovesi P, Gollasch S, Nentwig W, Olenin S, Roques A, Roy D, Hulme P and DAISE partners (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69

    Article  PubMed  CAS  Google Scholar 

  • Weiher E, Keddy PA (1999) Ecological assembly rules: perspectives, advances, retreats. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Wolkovich EM, Bolger DT, Holway DA (2009) Complex responses to invasive grass litter by ground arthropods in a Mediterranean scrub ecosystem. Oecologia 161:697–708

    Article  PubMed  Google Scholar 

  • Wu YT, Wang CH, Zhang XD, Zhao B, Jiang LF, Chen JK, Li B (2009) Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets. Biol Invasions 11:635–649

    Article  Google Scholar 

Download references

Acknowledgments

We thank Lars Timler for help with the field work and Martin Entling and two anonymous reviewers for helpful comments on a previous version of the manuscript. The study was in part financially supported by the Bauer-Hollmann foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schirmel.

Appendix

Appendix

See Table 3.

Table 3 Analysis of functional dispersion (FDis) of spiders excluding the dominant species P. monticola (GLM)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirmel, J., Buchholz, S. Invasive moss alters patterns in life-history traits and functional diversity of spiders and carabids. Biol Invasions 15, 1089–1100 (2013). https://doi.org/10.1007/s10530-012-0352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0352-4

Keywords

Navigation