Skip to main content
Log in

Systematically gap-filling the genome-scale metabolic model of CHO cells

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

Chinese hamster ovary (CHO) cells are the leading cell factories for producing recombinant proteins in the biopharmaceutical industry. In this regard, constraint-based metabolic models are useful platforms to perform computational analysis of cell metabolism. These models need to be regularly updated in order to include the latest biochemical data of the cells, and to increase their predictive power. Here, we provide an update to iCHO1766, the metabolic model of CHO cells.

Results

We expanded the existing model of Chinese hamster metabolism with the help of four gap-filling approaches, leading to the addition of 773 new reactions and 335 new genes. We incorporated these into an updated genome-scale metabolic network model of CHO cells, named iCHO2101. In this updated model, the number of reactions and pathways capable of carrying flux is substantially increased.

Conclusions

The present CHO model is an important step towards more complete metabolic models of CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge

    Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson B, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  CAS  PubMed  Google Scholar 

  • Benedict MN, Mundy MB, Henry CS, Chia N, Price ND (2014) Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models. PLoS Comput Biol 10:e1003882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biggs MB, Papin JA (2017) Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA. PLoS Comput Biol 13:e1005413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JP, Burns WP, Fong SS, Gowen CM, Roberts SB (2012) Gap detection for genome-scale constraint-based models. Adv Bioinform. https://doi.org/10.1155/2012/323472

    Article  Google Scholar 

  • Burgard AP, Vaidyaraman S, Maranas CD (2001) Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol Prog 17:791–797

    Article  CAS  PubMed  Google Scholar 

  • Calmels C, McCann A, Malphettes L, Andersen MR (2019) Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Metab Eng 51:9–19

    Article  CAS  PubMed  Google Scholar 

  • Carinhas N, Oliveira R, Alves PM, Carrondo MJ, Teixeira AP (2012) Systems biotechnology of animal cells: the road to prediction. Trends Biotechnol 30:377–385

    Article  CAS  PubMed  Google Scholar 

  • Carinhas N, Duarte TM, Barreiro LC, Carrondo MJ, Alves PM, Teixeira AP (2013) Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. Biotechnol Bioeng 110:3244–3257

    Article  CAS  PubMed  Google Scholar 

  • Castillo S, Patil KR, Jouhten P (2019) Yeast genome-scale metabolic models for simulating genotype–phenotype relations. In: Yeasts in biotechnology and human health. Springer, New York, pp 111–133

  • Chen Y, McConnell BO, Dhara VG, Naik HM, Li C-T, Antoniewicz MR, Betenbaugh MJ (2019) An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells. NPJ Syst Biol Appl 5:1–11

    Google Scholar 

  • Christian N, May P, Kempa S, Handorf T, Ebenhöh O (2009) An integrative approach towards completing genome-scale metabolic networks. Mol BioSyst 5:1889–1903

    Article  CAS  PubMed  Google Scholar 

  • Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Duarte NC, Herrgård MJ, Palsson B (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-de-Cossio-Diaz J, Mulet R (2019) Maximum entropy and population heterogeneity in continuous cell cultures. PLoS Comput Biol 15:e1006823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouladiha H, Marashi S-A (2017) Biomedical applications of cell-and tissue-specific metabolic network models. J Biomed Inform 68:35–49

    Article  PubMed  Google Scholar 

  • Fouladiha H, Marashi S-A, Torkashvand F, Mahboudi F, Lewis NE, Vaziri B (2020) A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production. Bioprocess Biosyst Eng 43:1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Galbraith SC, Bhatia H, Liu H, Yoon S (2018) Media formulation optimization: current and future opportunities. Curr Opin Chem Eng 22:42–47

    Article  Google Scholar 

  • Gu C, Kim GB, Kim WJ, Kim HU, Lee SY (2019) Current status and applications of genome-scale metabolic models. Genome Biol 20:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanada K, Nishijima M, Kiso M, Hasegawa A, Fujita S, Ogawa T, Akamatsu Y (1992) Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids. J Biol Chem 267:23527–23533

    Article  CAS  PubMed  Google Scholar 

  • Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609

    Article  CAS  PubMed  Google Scholar 

  • Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Hefzi H et al (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3:434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrgård MJ, Fong SS, Palsson B (2006) Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol 2:e72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong JK, Yeo HC, Lakshmanan M, Han S-h, Cha HM, Han M, Lee D-Y (2020) In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. J Biotechnol 308:10–20

    Article  CAS  PubMed  Google Scholar 

  • Hosseini Z, Marashi S-A (2017) Discovering missing reactions of metabolic networks by using gene co-expression data. Sci Rep 7:41774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyduke DR, Lewis NE, Palsson B (2013) Analysis of omics data with genome-scale models of metabolism. Mol BioSyst 9:167–174

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlsen E, Schulz C, Almaas E (2018) Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinform 19:467

    Article  CAS  Google Scholar 

  • Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the omics revolution for biotechnology. Curr Opin Biotechnol 24:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • King ZA et al (2015) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krumholz EW, Libourel IG (2015) Sequence-based network completion reveals the integrality of missing reactions in metabolic networks. J Biol Chem 290:19197–19207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar VS, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinform 8:212

    Article  CAS  Google Scholar 

  • Kumar VS, Maranas CD (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5:e1000308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakshmanan M et al (2019) Multi-omics profiling of CHO parental hosts reveals cell line‐specific variations in bioprocessing traits. Biotechnol Bioeng 116:2117–2129

    Article  CAS  PubMed  Google Scholar 

  • Latendresse M, Krummenacker M, Trupp M, Karp PD (2012) Construction and completion of flux balance models from pathway databases. Bioinformatics 28:388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley D et al (2019) Reprogramming AA catabolism in CHO cells with CRISPR/Cas9 genome editing improves cell growth and reduces byproduct secretion. Metab Eng 56:120–129

    Article  CAS  PubMed  Google Scholar 

  • Lularevic M, Racher AJ, Jaques C, Kiparissides A (2019) Improving the accuracy of flux balance analysis through the implementation of carbon availability constraints for intracellular reactions. Biotechnol Bioeng 116:2339–2352

    Article  CAS  PubMed  Google Scholar 

  • Medlock GL, Papin JA (2020) Guiding the refinement of biochemical knowledgebases with ensembles of metabolic networks and machine learning. Cell Syst 10:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medlock GL, Moutinho TJ, Papin JA (2020) Medusa: software to build and analyze ensembles of genome-scale metabolic network reconstructions. PLoS Comput Biol 16:e1007847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nookaew I et al (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orth JD, Palsson B (2010) Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng 107:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S, Reed JL (2018) Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries. Curr Opin Biotechnol 51:103–108

    Article  CAS  PubMed  Google Scholar 

  • Reed JL et al (2006) Systems approach to refining genome annotation. PNAS 103:17480–17484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richelle A, Chiang AW, Kuo C-C, Lewis NE (2019a) Increasing consensus of context-specific metabolic models by integrating data-inferred cell functions. PLoS Comput Biol 15:e1006867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richelle A, Joshi C, Lewis NE (2019b) Assessing key decisions for transcriptomic data integration in biochemical networks. PLoS Comput Biol 15:e1007185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ritacco FV, Wu Y, Khetan A (2018) Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog 34:1407–1426

    Article  CAS  PubMed  Google Scholar 

  • Salazar A, Keusgen M, von Hagen J (2016) Amino acids in the cultivation of mammalian cells. Amino Acids 48:1161–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez BJ, Zhang C, Nilsson A, Lahtvee PJ, Kerkhoven EJ, Nielsen J (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol 13:935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaub J, Clemens C, Kaufmann H, Schulz TW (2011) Advancing biopharmaceutical process development by system-level data analysis and integration of omics data. In: Genomics and Systems Biology of Mammalian Cell Culture. Springer, New York, pp 133–163

  • Schinn S-M, Morrison C, Wei W, Zhang L, Lewis NE (2020) A genome-scale metabolic network model synergizes with statistical learning to predict amino acid concentrations in Chinese hamster ovary cell cultures. bioRxiv

  • Thiele I, Vlassis N, Fleming RM (2014) fastGapFill: efficient gap filling in metabolic networks. Bioinformatics 30:2529–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traustason B, Cheeks M, Dikicioglu D (2019) Computer-aided strategies for determining the amino acid composition of medium for Chinese hamster ovary cell-based biomanufacturing platforms. Int J Mol Sci 20:5464

    Article  CAS  PubMed Central  Google Scholar 

  • Van Wijk XM et al (2017) Whole-genome sequencing of invasion-resistant cells identifies laminin α2 as a host factor for bacterial invasion. MBio 8:e02128–e02116

    PubMed  PubMed Central  Google Scholar 

  • Vitkin E, Shlomi T (2012) MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 13:R111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells E, Robinson AS (2017) Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnol J 12:1600105

    Article  CAS  Google Scholar 

  • Wishart DS et al (2017) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    Article  PubMed Central  CAS  Google Scholar 

  • Xu X et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo HC, Hong J, Lakshmanan M, Lee D-Y (2020) Enzyme capacity-based genome scale modelling of CHO cells. Metab Eng 60:138–147

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Hua Q (2016) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuangrong H, Seongkyu Y (2020) Identifying metabolic features and engineering targets for productivity improvement in CHO cells by integrated transcriptomics and genome-scale metabolic model. Biochem Eng J:107624

    Google Scholar 

Download references

Acknowledgements

This work was facilitated through generous funding from the Novo Nordisk Foundation through Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517).

Supplementary Informatio

Supplementary Table 1—The distribution of blocked reactions of iCHO1766 in all metabolic pathways.

Supplementary Table 2—The list of new reactions added by using GapFill method.

Supplementary Table 3—The list of new reactions added by using GAUGE method.

Supplementary Table 4—The list of metabolites that were labeled as “detected in human biofluids” in HMDB and the new reactions associated with them.

Supplementary Table 5—The list of metabolites that were labeled as “expected to be detected in human biofluids” in HMDB and the new reactions associated with them.

Supplementary Table 6—The list of blocked repetitive reactions in iCHO1766 that have been suggested for deletion.

Supplementary Table 7—The list of new transport reactions that have a similar reaction in a subcellular part with no genes in iCHO1766.

Supplementary Table 8—The list of new reactions added by searching the BiGG database.

Supplementary Table 9—The list of the reactions in metabolic pathways and expression levels associated with them, both in iCHO1766 and iCHO2101.

Supplementary Table 10—The spreadsheet format of iCHO2101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed-Amir Marashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not include any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10529_2020_3021_MOESM1_ESM.xlsx

Electronic supplementary material 1 Supplementary Table 1: The distribution of blocked reactions of iCHO1766 in all metabolic pathways. Supplementary Table 2: The list of new reactions added by using GapFill method. Supplementary Table 3: The list of new reactions added by using GAUGE method. Supplementary Table 4: The list of metabolites that were labeled as “detected in human biofluids” in HMDB and the new reactions associated with them. Supplementary Table 5: The list of metabolites that were labeled as “expected to be detected in human biofluids” in HMDB and the new reactions associated with them. Supplementary Table 6: The list of blocked repetitive reactions in iCHO1766 that have been suggested for deletion. Supplementary Table 7: The list of new transport reactions that have a similar reaction in a subcellular part with no genes in iCHO1766. Supplementary Table 8: The list of new reactions added by searching the BiGG database. Supplementary Table 9: The list of the reactions in metabolic pathways and expression levels associated with them, both in iCHO1766 and iCHO2101. Supplementary Table 10: The spreadsheet format of iCHO2101. (XLSX 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouladiha, H., Marashi, SA., Li, S. et al. Systematically gap-filling the genome-scale metabolic model of CHO cells. Biotechnol Lett 43, 73–87 (2021). https://doi.org/10.1007/s10529-020-03021-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-03021-w

Keywords

Navigation