Skip to main content
Log in

Nanobody against PDL1

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Programmed death ligand 1 (PDL1, CD274, B7-H1) has been identified as the ligand for the immune inhibitory receptor programmed death 1 protein (PD1/PDCD1). PDL1 is a member of B7 family of immune molecules and this protein together with PDL2, are two ligands for PD1 expressed on activated lymphoid cells. By binding to PD1 on activated T cells, PDL1 may inhibit T cell responses by inducing apoptosis. Accordingly, it leads to the immune evasion of cancers and contribute to tumor growth, thus PDL1 is regarded as therapeutic target for malignant cancers. We selected PDL1 specific nanobodies from a high quality dromedary camel immune library by phage display technology, three anti-PDL1-VHHs were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amarnath S, Mangus CW, Wang JC et al (2011) The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 3(111):111–120

    Article  Google Scholar 

  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526

    Article  CAS  PubMed  Google Scholar 

  • Beatty JD, Beatty BG, Vlahos WG (1987) Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 100:173–179

    Article  CAS  PubMed  Google Scholar 

  • Bylicki O, Paleiron N, Rousseau-Bussac G, Chouaïd C (2018) New PDL1 inhibitors for non-small cell lung cancer: focus on pembrolizumab. OncoTargets Ther 11:4051–4064

    Article  Google Scholar 

  • Deng X, Wang L, You X, Dai P, Zeng Y (2018) Advances in the T7 phage display system (Review). Mol Med Rep 17(1):714–720

    CAS  PubMed  Google Scholar 

  • Dougan M, Ingram JR, Jeong HJ et al (2018) Targeting cytokine therapy to the pancreatic tumor microenvironment using PDL1-specific VHHs. Cancer Immunol Res 6(4):389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumoulin M, Conrath K, Van Meirhaeghe A et al (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11(3):500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovčevska I, Muyldermans S (2019) The therapeutic potential of nanobodies. BioDrugs.https://doi.org/10.1007/s40259-019-00392-z

    Article  PubMed Central  Google Scholar 

  • Kambayashi Y, Fujimura T, Hidaka T, Aiba S (2019) Biomarkers for predicting efficacies of anti-PD1 antibodies. Front Med (Lausanne) 6:174

    Article  Google Scholar 

  • Khodabakhsh F, Behdani M, Rami A, Kazemi-Lomedasht F (2018) Single-domain antibodies or nanobodies: a class of next-generation antibodies. Int Rev Immunol 37(6):316–322

    Article  CAS  PubMed  Google Scholar 

  • Kwok G, Yau TC, Chiu JW, Tse E, Kwong YL (2016) Pembrolizumab (Keytruda). Hum Vaccin Immunother 12(11):2777–2789

    Article  PubMed  PubMed Central  Google Scholar 

  • Kythreotou A, Siddique A, Mauri FA, Bower M, Pinato DJ (2018) PDL1. J Clin Pathol 71(3):189–194

    Article  PubMed  Google Scholar 

  • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Sun Y, Elseviers J et al (2014) A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst 139(15):3718–3721

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang W, Jiang K et al (2019) Nanobody against the E7 oncoprotein of human papillomavirus 16. Mol Immunol 109:12–19

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Shan H, Ma, Meng et al (2017) An ultrasensitive photoelectrochemical immunosensor by integration of nanobody, TiO2 nanorod arrays and ZnS nanoparticles for the detection of tumor necrosis factor-α. J Electroanal Chem 803:1–10

    Article  CAS  Google Scholar 

  • Munn DH (2018) The host protecting the tumor from the host-targeting PD–L1 expressed by host cells. J Clin Invest 128(2):570–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Planes-Laine G, Rochigneux P, Bertucci F, Chrétien AS, Viens P, Sabatier R, Gonçalves A (2019) PD-1/PDL1 targeting in breast cancer: the first clinical evidences are emerging. A literature review. Cancers (Basel) 11:1033

    Article  CAS  Google Scholar 

  • Poullin P, Bornet C, Veyradier A, Coppo P (2019) Caplacizumab to treat immune-mediated thrombotic thrombocytopenic purpura. Drugs Today 55(6):367

    Article  CAS  Google Scholar 

  • Rosskopf S, Leitner J, Zlabinger GJ, Steinberger P (2019) CTLA-4 antibody ipilimumab negatively affects CD4 + T-cell responses in vitro. Cancer Immunol Immunother 68(8):1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothbauer U (2018) Speed up to find the right ones: rapid discovery of functional nanobodies. Nat Struct Mol Biol 25(3):199–201

    Article  CAS  PubMed  Google Scholar 

  • Salvador JP, Vilaplana L, Marco MP (2019) Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 411(9):1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Tundo GR, Sbardella D, Lacal PM, Graziani G, Marini S (2019) On the horizon: targeting next-generation immune checkpoints for cancer treatment. Chemotherapy 6:1–19

    Google Scholar 

  • van Brussel AS, Adams A, Oliveira S (2016) Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imaging Biol 18(4):535–544

    Article  PubMed  Google Scholar 

  • van Lith SAM, van den Brand D, Wallbrecher R, van Duijnhoven SMJ, Brock R, Leenders WPJ (2017) A conjugate of an anti-epidermal growth factor receptor (EGFR) VHH and a cell-penetrating peptide drives receptor internalization and blocks EGFR activation. Chembiochem 18(24):2390–2394

    Article  PubMed  Google Scholar 

  • Zhang Y, Bao H, Miao F et al (2013) Characterization of a monoclonal antibody to Spiroplasma eriocheiris and identification of a motif expressed by the pathogen. Vet Microbiol 161(3–4):353–358

    Article  CAS  PubMed  Google Scholar 

  • Zuazo M, Gato-Cañas M, Llorente N et al (2017) Molecular mechanisms of programmed cell death-1 dependent T cell suppression: relevance for immunotherapy. Ann Transl Med 5:385

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the Chinese National Nature Science Foundation (31070706) and by the Fund from the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province (BK20161416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Jiang, K., Wang, T. et al. Nanobody against PDL1. Biotechnol Lett 42, 727–736 (2020). https://doi.org/10.1007/s10529-020-02823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02823-2

Keywords

Navigation