Skip to main content
Log in

Recent developments in chromatographic purification of biopharmaceuticals

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Over the last several decades, researchers have time and again proposed use of non-chromatographic methods for processing of biotherapeutic products. However, chromatography continues to be the backbone of downstream processing, particularly at process scale. There are many reasons for this, critical ones being the unparalleled scalability, robustness, and selectivity that process chromatography offers over its peers. It is no surprise then that process chromatography has been a topic of major developments in resin matrix, ligand chemistry, modalities, high throughput process development, process modelling, and approaches for control. In this review, we attempt to summarize major developments in the above-mentioned areas. Greater significance has been given to advancements in the last 5 years (2013–2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Orr et al. (2013)

Fig. 2

Adapted from Rathore et al. (2017)

Similar content being viewed by others

Abbreviations

AEX:

Anion exchange

ATPS:

Aqueous two phase separation

CEX:

Cation-exchange

CIP:

Cleaning-in-place

CAC:

Continuous annular chromatography

CCC:

Countercurrent chromatography

CCT:

Countercurrent Tangential

cGMP:

Current good manufacturing practices

DoE:

Design of experiments

FDA:

Food and drug administration

HPLC:

High performance liquid chromatography

HTPD:

High throughput process development

HTS:

High throughput screening

HCP:

Host cell proteins

HCIC:

Hydrophobic charge induction chromatography

HIC:

Hydrophobic interaction chromatography

MPC:

Model predictive control

mAb:

Monoclonal antibodies

MCSGP:

Multicolumn countercurrent solvent gradient purification chromatography

MM:

Multimodal or mixed mode

PAROC:

Parametric optimization and control

PDAE:

Partial differential and algebraic equations

PCC:

Periodic countercurrent chromatography

PEG:

Polyethylene gycol

PAT:

Process analytical technology

PID:

Proportional-integrator-derivative

QbD:

Quality by design

SMB:

Simulated moving bed

SEC:

Size exclusion chromatography

TRPA:

Thermal responsive protein A

References

  • Arkell K, Breil MP, Frederiksen SS, Nilsson B (2017) Mechanistic modeling of reversed-phase chromatography of insulin with potassium chloride and ethanol as mobile-phase modulators. ACS Omega 2:136–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhambure R, Gupta D, Rathore AS (2013) A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product. J Chromatogr A 1314:188–198

    Article  PubMed  CAS  Google Scholar 

  • Bolton GR, Street B, Mehta KK (2016) The role of more than 40 years of improvement in protein a chromatography in the growth of the therapeutic antibody industry. Biotechnol Prog 32:1193–1202

    Article  PubMed  CAS  Google Scholar 

  • Champagne J, Balluet G, Gantier R et al (2013) “Salt tolerant” anion exchange chromatography for direct capture of an acidic protein from CHO cell culture. Protein Expr Purif 89:117–123

    Article  PubMed  CAS  Google Scholar 

  • Chu W-N, Wu Q-C, Yao S-J, Lin D-Q (2018) High-throughput screening and optimization of mixed-mode resins for human serum albumin separation with microtiter filter plate. Biochem Eng J 131:47–57

    Article  CAS  Google Scholar 

  • Dutta AK, Fedorenko D, Tan J et al (2017) Continuous countercurrent tangential chromatography (CCTC) for mixed mode post-capture operations in monoclonal antibody purification. J Chromatogr A 1511:37–44

    Article  PubMed  CAS  Google Scholar 

  • Dutta AK, Tran T, Napadensky B et al (2015) Purification of monoclonal antibodies from clarified cell culture fluid using protein A capture continuous counter current tangential chromatography. J Biotechnol 213:54–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghose S, Tao Y, Conley L et al (2013) Purification of monoclonal antibodies by hydrophobic interaction chromatography under no-salt conditions. MAbs 5:795–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghose S, Zhang J, Conley L et al (2014) Maximizing binding capacity for protein A chromatography. Biotechnol Prog 30:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Godawat R, Brower K, Jain S et al (2012) Periodic counter-current chromatography—design and operational considerations for integrated and continuous purification of proteins. Biotechnol J 7:1496–1508

    Article  PubMed  CAS  Google Scholar 

  • Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gonzalez M, Gonzalez-Valdez J, Deloisa KM-, Rito-Palomares M (2017) Monolithic chromatography: insights and practical perspectives. J Chem Technol Biotechnol 92:9–13

    Article  CAS  Google Scholar 

  • Hanke AT, Ottens M (2014) Purifying biopharmaceuticals: knowledge-based chromatographic process development. Trends Biotechnol 32:210–220

    Article  PubMed  CAS  Google Scholar 

  • Ingle UM, Lali AM (2017) Significance of porosity and pore accessibility for the selection of ion exchange adsorbents for chromatographic purification of macromolecules. Acta Chromatogr 29:5–24

    Article  CAS  Google Scholar 

  • Ingold O, Pfister D, Morbidelli M (2016) A reactive continuous chromatographic process for protein PEGylation. React Chem Eng 1:218–228

    Article  CAS  Google Scholar 

  • Iskra T, Sacramo A, Gallo C et al (2015) Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode. Biotechnol Prog 31:750–757

    Article  PubMed  CAS  Google Scholar 

  • Kaleas KA, Tripodi M, Revelli S et al (2014) Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J Chromatogr B 969:256–263

    Article  CAS  Google Scholar 

  • Kateja N, Agarwal H, Hebbi V, Rathore AS (2017a) Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study. Biotechnol Prog 33:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Kateja N, Kumar D, Godara A et al (2017b) Integrated chromatographic platform for simultaneous separation of charge variants and aggregates from monoclonal antibody therapeutic products. Biotechnol J 12:1700133

    Article  CAS  Google Scholar 

  • Kluters S, Frech C, Von Hirschheydt T et al (2015) Solvent modulation strategy for superior antibody monomer/aggregate separation in cation exchange chromatography. J Chromatogr B 1006:37–46

    Article  CAS  Google Scholar 

  • Krattli M, Muller-Spath T, Morbidelli M (2013) Multifraction separation in countercurrent chromatography (MCSGP). Biotechnol Bioeng 110:2436–2444

    Article  PubMed  CAS  Google Scholar 

  • Krättli M, Steinebach F, Morbidelli M (2013) Online control of the twin-column countercurrent solvent gradient process for biochromatography. J Chromatogr A 1293:51–59

    Article  PubMed  CAS  Google Scholar 

  • Kröber T, Wolff MW, Hundt B et al (2013) Continuous purification of influenza virus using simulated moving bed chromatography. J Chromatogr A 1307:99–110

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Leweke S, von Lieres E, Rathore AS (2015) Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products. J Chromatogr A 1426:140–153

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Wickramasinghe SR, Qian X (2017) Membrane chromatography for protein purifications from ligand design to functionalization. Sep Sci Technol 52:299–319

    Article  CAS  Google Scholar 

  • Madadkar P, Sadavarte R, Butler M et al (2017) Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography. J Chromatogr B 1056:158–164

    Article  CAS  Google Scholar 

  • Maria S, Joucla G, Garbay B et al (2015) Purification process of recombinant monoclonal antibodies with mixed mode chromatography. J Chromatogr A 1393:57–64

    Article  PubMed  CAS  Google Scholar 

  • Martínez Cristancho CA, Seidel-Morgenstern A (2016) Purification of single-chain antibody fragments exploiting pH-gradients in simulated moving bed chromatography. J Chromatogr A 1434:29–38

    Article  PubMed  CAS  Google Scholar 

  • McDonald P, Tran B, Williams CR et al (2016) The rapid identification of elution conditions for therapeutic antibodies from cation-exchange chromatography resins using high-throughput screening. J Chromatogr A 1433:66–74

    Article  PubMed  CAS  Google Scholar 

  • Mendhe R, Thukkaram M, Patil N, Rathore AS (2015) Comparison of PAT based approaches for making real-time pooling decisions for process chromatography-use of feed forward control. J Chem Technol Biotechnol 90:341–348

    Article  CAS  Google Scholar 

  • Nian R, Zhang W, Tan L et al (2016) Advance chromatin extraction improves capture performance of protein A affinity chromatography. J Chromatogr A 1431:1–7

    Article  PubMed  CAS  Google Scholar 

  • Nilsson B, Andersson N (2017) Simulation of process chromatography. In: Staby A, Rathore AS, Satinder A (eds) Preprative chromatography for separation of proteins. Wiley, New Jersey, pp 81–108

    Chapter  Google Scholar 

  • Orr V, Zhong L, Moo-young M, Chou CP (2013) Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 31:450–465

    Article  PubMed  CAS  Google Scholar 

  • Papathanasiou MM, Avraamidou S, Oberdieck R et al (2016) Advanced control strategies for the multicolumn countercurrent solvent gradient purification process. AIChE J 62:2341–2357

    Article  CAS  Google Scholar 

  • Pistikopoulos EN, Diangelakis NA, Oberdieck R et al (2015) PAROC—an integrated framework and software platform for the optimisation and advanced model-based control of process systems. Chem Eng Sci 136:115–138

    Article  CAS  Google Scholar 

  • Rajamanickam V, Herwig C, Spadiut O (2015) Monoliths in bioprocess technology. Chromatography 2:195–212

    Article  CAS  Google Scholar 

  • Rathore AS, Kateja N, Agarwal H (2017) Continuous downstream processing for production of biotech therapeutics. In: Subramanian G (ed) continuous biomanufacturing: innovative technologies and methods. Wiley, Weinheim, pp 261–288

    Google Scholar 

  • Rodrigo G, Gruvegård M, Van Alstine J (2015) Antibody fragments and their purification by protein L affinity chromatography. Antibodies 4:259–277

    Article  CAS  Google Scholar 

  • Shekhawat LK, Manvar AP, Rathore AS (2016) Enablers for QbD implementation: mechanistic modeling for ion-exchange membrane chromatography. J Mem Sci 500:86–98

    Article  CAS  Google Scholar 

  • Shekhawat LK, Chandak M, Rathore AS (2017) Mechanistic modeling of hydrophobic interaction chromatography for monoclonal antibody purification: process optimization in the quality by design paradigm. J Chem Technol Biotechnol 92:2527–2537

    Article  CAS  Google Scholar 

  • Shukla AA, Wolfe LS, Mostafa SS, Norman C (2017) Evolving trends in mAb production processes. Bioeng Transl Med 2:58–69

    PubMed  PubMed Central  Google Scholar 

  • Singh N, Herzer S (2017) Downstream processing technologies/capturing and final purification. In: Scheper T, Belkin S, Bley T et al (eds) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 1–64

    Google Scholar 

  • Steinebach F, Angarita M, Karst DJ et al (2016a) Model based adaptive control of a continuous capture process for monoclonal antibodies production. J Chromatogr A 1444:50–56

    Article  PubMed  CAS  Google Scholar 

  • Steinebach F, Müller-Späth T, Morbidelli M (2016b) Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnol J 11:1126–1141

    Article  PubMed  CAS  Google Scholar 

  • Steinebach F, Ulmer N, Wolf M et al (2017) Design and operation of a continuous integrated monoclonal antibody production process. Biotechnol Prog 33:1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Undey C, Low D, Menezes JC, Koch M (eds) (2012) PAT Applied in biopharmaceutical process development and manufacturing. CRC Press, Boca Raton

    Google Scholar 

  • Wang J, Jenkins EW, Robinson JR et al (2015) A new multimodal membrane adsorber for monoclonal antibody purifications. J Membr Sci 492:137–146

    Article  CAS  Google Scholar 

  • Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: part I. Clearance of minute virus of mice. Biotechnol Bioeng 110:491–499

    Article  PubMed  CAS  Google Scholar 

  • Wellhoefer M, Sprinzl W, Hahn R, Jungbauer A (2014) Continuous processing of recombinant proteins: integration of refolding and purification using simulated moving bed size-exclusion chromatography with buffer recycling. J Chromatogr A 1337:48–56

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Iskra T, Daniels W et al (2017) Structural and performance characteristics of representative anion exchange resins used for weak partitioning chromatography. Biotechnol Prog 33:425–434

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Center of Excellence for Biopharmaceutical Technology Grant from Department of Biotechnology, Government of India (Number BT/COE/34/SP15097/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag S. Rathore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, A.S., Kumar, D. & Kateja, N. Recent developments in chromatographic purification of biopharmaceuticals. Biotechnol Lett 40, 895–905 (2018). https://doi.org/10.1007/s10529-018-2552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2552-1

Keywords

Navigation